Nurul Adha Oktarini, Saputri and Misinem, . and Khoirul, Zuhri (2024) Analysis of Sentiment Based on Opinions from the 2019 Presidential Election. Journal of Data Science, 2024 (25). pp. 1-9. ISSN 2805-5160
Text
501 - Published Version Available under License Creative Commons Attribution. Download (3kB) |
Abstract
Twitter is a popular social media platform where the public is free to comment and write about anything. It is common for people to post comments containing harsh words and even hate speech. The 2019 presidential election in Indonesia generated a significant amount of comments, with some users praising the candidates, others criticizing them, and some even resorting to insults. To extract meaningful information from these comments and classify the text, sentiment analysis is essential. In this research, sentiment analysis involves the process of categorizing textual documents into two classes: negative and positive sentiment. The opinion data was collected from the Twitter social network in the form of tweets related to the 2019 presidential election. The dataset used in the study consisted of 3,337 tweets, which were divided into 70% training data and 30% test data. The training data comprised tweets whose sentiment was already known, serving as a foundation for the model to learn and make predictions. The primary objective of this research is to determine whether the tweets, written in Indonesian, express positive or negative sentiments. The Naive Bayes Classifier algorithm was employed to classify the tweet data. This algorithm is well-suited for text classification tasks due to its simplicity and efficiency in handling large datasets. The classification results on the test data demonstrated that the Naive Bayes Classifier algorithm achieved an overall accuracy of 71%. Specifically, the accuracy for negative sentiment classification was 71%, while the accuracy for positive sentiment classification was 70%. These results indicate that the Naive Bayes Classifier is effective in distinguishing between positive and negative sentiments in tweets related to the presidential election.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Sentiment Analysis, Classification, Naïve Bayes, Twitter, 2019 Presidential Election |
Subjects: | Q Science > Q Science (General) Q Science > QA Mathematics > QA75 Electronic computers. Computer science Q Science > QA Mathematics > QA76 Computer software |
Depositing User: | Unnamed user with email masilah.mansor@newinti.edu.my |
Date Deposited: | 30 Jul 2024 01:46 |
Last Modified: | 30 Jul 2024 01:46 |
URI: | http://eprints.intimal.edu.my/id/eprint/1959 |
Actions (login required)
View Item |