EFFECTS OF ABIOTIC STRESSES ON THE GROWTH OF *Vigna radiata*

MAH CHOON BIN

DISSERTATION SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF BACHELOR OF BIOTECHNOLOGY (HONOURS)

FACULTY OF HEALTH AND LIFE SCIENCES
INTI INTERNATIONAL UNIVERSITY
PUTRA NILAI, MALAYSIA

AUGUST 2016
NON-PLAGIARISM DECLARATION

By this letter I declare that I have written this thesis completely by myself, and that I have used no other sources or resources than the ones mentioned.

I have indicated all quotes and citations that were literally taken from publications, or that were in close accordance with the meaning of those publications, as such. All sources and other resources used are stated in the references.

Moreover I have not handed in a thesis similar in contents elsewhere.

In case of proof that the thesis has not been constructed in accordance with this declaration, the Faculty of Health and Life Sciences has the right to consider the research thesis as a deliberate act that has been aimed at making correct judgment of the candidate's expertise, insights and skills impossible.

I acknowledge that the assessor of this item may, for the purpose of assessing this item,

- reproduce this assessment item and provide a copy to another member of the University; and/or,
- communicate a copy of this assessment item to a plagiarism checking service (which may then retain a copy of the assessment item on its database for the purpose of future plagiarism checking).

In case of plagiarism the examiner has the right to fail me and take action as prescribed by the rules regarding Academic Misconduct practiced by INTI International University.

MAH CHOON BIN
Name

I14006018
I.D.Number

Signature

16 December 2016
Date
ACKNOWLEDGEMENT

I would like to express my sincere thanks to my supervisor, Dr Thong Weng Hing as well as our head of program, Dr Geetha Subramaniam. Both of them provided me the great opportunity to work on this fantastic project which is the effects of abiotic stresses on the growth of Vigna radiata. In this project, owing to these two special people who have helped me, I was able to perform a lot of researches, learn about new skills and gained experiences in my degree life.

Secondly, I would also like to thank my parents and friends who supported me physically or mentally. Without them, it is so hard to overcome the obstacles faced. Again, thanks for them to enable me for finishing this project in time.
ABSTRACT

Abiotic stresses are discouraging the normal growth and production of crops. Unlike animals, plants which do not have the motile system are unable to escape from this disaster. Hence, this experiment was to determine the effects of abiotic stresses (osmotic stress, salinity and heavy metal stress) on the growth of *Vigna radiata*. In this study, the seeds of *V. radiata* were cultured onto black soil supplemented with Murashige and Skoog (MS) medium which served as control or MS medium augmented with various concentrations of abscisic acid (ABA) (1 mg/L, 2 mg/L, 5 mg/L, 10 mg/L, 15 mg/L and 20 mg/L), sodium chloride (NaCl) (1 mg/L, 5 mg/L, 10 mg/L, 20 mg/L, 30 mg/L and 40 mg/L) or cadmium (Cd) (0.00005 mg/L, 0.00025 mg/L, 0.00050 mg/L, 0.00250 mg/L, 0.01250 mg/L). The number of leaves and stem height of *V. radiata* were observed and recorded over a period of 22 days. Under the treatment of ABA, the leaves turned from green to yellow and eventually withered. The highest mean number of leaves was 2 per explant at 1 mg/L, 2 mg/L, 5 mg/L and 15 mg/L ABA. The highest mean stem height was 21.058 cm at 2 mg/L ABA. On the other hand, NaCl stress resulted in the formation of dried leaves. The peak average number of leaves was 2 per explant at 1 mg/L and 5 mg/L of NaCl while the peak of average stem height was 17.15 cm at 1 mg/L NaCl. Cd showed its effect by turning the greenish leaves into yellowish and the leaves became soft. The optimal mean of amount of leaves was 2 at all concentrations tested while 0.00050 mg/L of Cd yielded the optimal average of stem height, which was 18.85 cm. Leaf chlorosis was also observed in the Cd treatment. In a nutshell, the abiotic stresses (ABA, NaCl, Cd) utilized in this study was proven to impose their negative effects on the growth of *V. radiata*.
TABLE OF CONTENT

NON-PLAGIARISM DECLARATION ii
DECLARATION iii
ABSTRACT iv
TABLE OF CONTENT v
LIST OF TABLES vi
LIST OF FIGURES vii
LIST OF ABBREVIATION viii

CHAPTER

1.0 INTRODUCTION 1

2.0 LITERATURE REVIEW 3
 2.1 Vigna radiata 3
 2.1.1 Characteristics of V. radiata 3
 2.1.2 Usage of Mung Bean 4
 2.2 Osmotic Pressure 5
 2.2.1 Role of Abscisic Acid (ABA) and Its Function 5
 2.2.2 Outcome of Plant Cell under Different Osmotic Treatment 6
 2.2.3 Phytomechanisms Against Osmotic Environment 6
 2.3 Salinity Stress 7
 2.3.1 Consequences of Salt Treatment to Plants 7
 2.3.2 Strategies to Strike Salinity Issue 9
 2.4 Heavy Metal Stress 9
 2.4.1 Heavy Metal 9
 2.4.2 Deleterious Effects of Heavy Metals bring to Plants 10
 2.4.3 Characteristics of Cd 11
 2.4.4 Responses of Plants to Heavy Metal 11

3.0 MATERIALS AND METHODS 13
 3.1 Plant Material Collection 13
 3.2 Preparation of Basal Nutrient Medium 13
 3.2.1 Preparation of MS Basal Nutrient Medium 13
3.2.2 Preparation of MS Basal Nutrient Medium Containing Abscisic Acid (ABA), Cadmium (Cd) and Sodium Chloride (NaCl)

3.3 Effects of Various Concentrations of ABA on the Growth of *V. radiata*

3.4 Data Analysis

4.0 RESULTS

4.1 Effect of Abscisic Acid (ABA) on the Growth of *V. radiata*

4.2 Effect of Sodium Chloride (NaCl) on the Growth of *V. radiata*

4.3 Effect of Cadmium (Cd) on the Growth of *V. radiata*

5.0 DISCUSSION

5.1 Effect of Abscisic Acid (ABA) on the Growth of *V. radiata*

5.2 Effect of Sodium Chloride (NaCl) on the Growth of *V. radiata*

5.3 Effect of Cadmium (Cd) on the Growth of *V. radiata*

6.0 CONCLUSION

7.0 REFERENCES

8.0 APPENDICES
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Components and volume needed for preparation of 300 mL MS basal nutrient medium</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>Amount of ABA added for preparation of distinctive concentrations of ABA in a total volume of 300 mL</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>Amount of NaCl added for preparation of distinctive concentrations of NaCl in a total volume of 300 mL</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>Amount of Cd added for preparation of distinctive concentrations of Cd in a total volume of 300 mL</td>
<td>16</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The mean number of leaves of V. radiata produced under different concentrations of ABA for a duration of 22 days</td>
<td>19</td>
</tr>
<tr>
<td>2</td>
<td>The general growth of V. radiata under different concentrations of ABA treatment at day 18</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>The mean number of stem height of V. radiata produced under different concentrations of ABA for a duration of 22 days</td>
<td>21</td>
</tr>
<tr>
<td>4</td>
<td>The mean number of leaves in V. radiata produced under different concentrations of NaCl for a duration of 22 days</td>
<td>22</td>
</tr>
<tr>
<td>5</td>
<td>The general growth of V. radiata under different concentrations of NaCl treatment at day 18</td>
<td>23</td>
</tr>
<tr>
<td>6</td>
<td>The mean number of stem height of V. radiata produced under different concentrations of NaCl for a duration of 22 days</td>
<td>24</td>
</tr>
<tr>
<td>7</td>
<td>The mean number of leaves in V. radiata produced under different concentrations of Cd for a duration of 22 days</td>
<td>25</td>
</tr>
<tr>
<td>8</td>
<td>The general growth of V. radiata under different concentrations of Cd treatment at day 18</td>
<td>26</td>
</tr>
<tr>
<td>9</td>
<td>The mean number of stem height of V. radiata produced under different concentrations of Cd for a duration of 22 days</td>
<td>27</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

% Percentage
°C Degree Celsius: Unit of Temperature
μM Micromolarity: Unit of Concentration
ABA Abscisic acid
ANOVA Analysis of Variance
Cd Cadmium
Cl⁻ Chlorine ion
Co Cobalt
Cu Copper
DNA Deoxyribonucleic acid
Fe Iron
g/mL Gram per millilitre: Unit of concentration
GSH Glutathione
H⁺ Hydrogen ion
HCl Hydrochloric acid
Hg Mercury
K⁺ Potassium ion
mg Milligram: Unit of mass
mg/L Milligram per litre: Unit of concentration
MS Murashige and Skoog
Na⁺ Sodium ion
NaCl Sodium chloride
NADP Nicotinamide adenine dinucleotide phosphate
NaOH Sodium hydroxide
Ni Nickel
Pb Lead
pH power of hydrogen: Measure of concentration of hydrogen ion
Zn Zinc
CHAPTER 1

INTRODUCTION

By far, environmental disruption has caused the decreasing yield of crops in 20% in the cultured territory and approximately 50% in all irrigated territory all over the world respectively (Rhoades & Loveday, 1990). Not only for plants, all living organisms throughout the earth require certain functional mechanism to strategize themselves when encounter with various stress sources such as climate, heavy metal pollution, drought and so on. Creatures which are able to move can avoid them but for plants, it is too difficult to do so. Scientists have performed several experiments and found out that numerous genes are responsible for plant structure, shape and organic chemistry at the genetic level and directly lay impacts for them (Ziaf et al., 2016). Therefore, this leads them to develop a biochemical and morphological evolutions as to sustain the disastrous significances brought by the environment (Petrov, Hille, Mueller-Roeber, & Gechev, 2015).

Nowadays, the attempts contributed by scientists to further the abiotic stress endurance of plants with alleles surviving under the unfavorable conditions have led to creditably remarkable improvements (Khan, Ahmad, & Khan, 2015). However, the current new applications such as in vitro mutagenesis, tissue culture and genetic transformation (Dita, Rispaïl Prats, Rubiales, & Singh, 2006) must come through various difficulties and shortcomings because of the complicated characteristics of abiotic factor endurance (Khan et al., 2015).

Abiotic stress is a crucial limitation for the final production of crops. In general, it can be known as the unfavorable environmental circumstances such as salinity, nutrient stress and alteration of temperature which will damage the morphological and physiological developments within plants (Atkinson & Urwin, 2012) while in comparison, biotic stress is often referred as the damages to plants given by the living organisms such as microbes and herbivores (Rejeb, Pastor,
& Mauch-Mani, 2014). A typically negative example for abiotic influence is the total production of crops. The climatic alteration and the water sources provide certain pressure towards the growth and yield of crop plants, and thus indirectly affects the food productivity globally (Atkinson & Urwin, 2012). However, for plant phenotypic comebacks when treating with abiotic stress, there is only little information found (Pandey, Ramegowda, & Senthil-Kumar, 2015).

Owing to the expeditious urbanization and industrialization among nations, heavy metal pollution has become a dreadful problem (Jiang et al., 2013). The contaminated soil with heavy metals shows harmfulness to human in many ways, such as inhalation, skin contact and food sources (Jiao, Teng, Zhan, Wu, & Lin, 2015). Also, there is possibility that heavy metal can pollute the deep groundwater. The hazardous cadmium (Cd) metal and its compounds basically emanated from rechargeable nickel–cadmium batteries. Bone and kidney functions of human will be damaged with the contact of Cd (Jarup, 2003).

Therefore, in this experiment, the propagation of the Vigna radiata was carried out to determine the effect of abiotic factors, namely abscisic acid (ABA), sodium chloride (NaCl) and Cd on the growth of V. radiata.
CHAPTER 2

LITERATURE REVIEW

2.1 Vigna radiata

2.1.1 Characteristics of V. radiata

V. radiata L., common name known as mung bean, is found to be one of the most focal legumes in both tropical and subtropical areas. These areas have the similar temperature which is between 28°C and 30°C and it is suitable for mung bean to yield the optimal output (Karim, Fukamachi, & Hidaka, 2003). It serves as a high-consuming food source because approximate 90% of the mung bean production is sold to European nations, Australia and United States (Reddy et al., 2008).

Mung bean is categorized under Fabaceae family. It possesses diploid (2n) chromosomes. From the morphological view, mung bean is observed as taproot and nodules present. Its solid stem usually prostrate and hairy covered. Its branches are arching and the entire plant can grow up to 1 meter maximum. For leaves, they are all petiolate, compound, triangulate, hairy and green in color. Basically, the inflorescence of mung bean is short, axillary, racemes and with five to six flowers. Its elongated and straight fruits are hairy and consist of three to ten brown or black seeds (Encyclopedia of Life, 2016).

The life cycle of mung bean is around 60 days and this characteristic allows it to be harvested in a short period. Another contribution from mung bean is it plays the role as an effective helper in nitrogen fixation (Dewi & Fiatin, 2015). It can elevate the fertility of soils by assimilate
the atmospheric nitrogen along with soil microbes. Hence, compared to other floras, its tolerance towards nutrient deficiency is higher (Dewi & Fiatin, 2015).

2.1.2 Usage of *V. radiata*

Mung bean is nutritionally rich in protein, carbohydrate and micronutrients (Dahiya et al., 2013). Based on the research finalized by Reddy et al (2008), the sprouts of mung bean contained ascorbic acid for human consumption. Ascorbic acid acts as a useful compound in preventing scurvy, degenerative diseases and mitigate gastric ulcers. Unlike animals, humans failed to biosynthesize ascorbic acid by themselves. Therefore, it is vital in order to maintain the normal growth of humans.

Therapeutically, mung bean is always used as a supplement as its amino acids are easy to be digested and causes less flatulence cases (Fery, 2002). In medical and cosmetic purposes, mung bean is useful owing to its antidotal action (Sharma et al., 2009). According to Kahraman, Adali, Mehmet, Onder and Nur (2014), it has antihypertensive and antidiabetic effects as well. Other medicinal benefits such as treatments in hepatitis, gastritis and heat rash characterize mung bean to be famous over the world (Kahraman et al, 2014). Antioxidants such as vitexin and isovitexin in mung bean soup are critically important to prevent injury from heat stress (Cao et al., 2011).

On the other aspect, mung bean is treated as a popular model for the research purposes. Its small genome size, self-pollination and fast growth rate catch the attention of scientists to further the application of it (Kim, Nair, Lee, & Lee, 2015). In order to explore the genetic enhancement and maximal production of mung bean, efforts such as molecular marker development and linkage maps are constructed in the breeding program (Kim et al., 2015). Developing nations can obtain benefits from this as malnutrition and starving issue can be solved with the optimal supply of mung bean.
2.2 OSMOTIC PRESSURE

2.2.1 Role of Abscisic Acid (ABA) and Its Function

ABA is categorized as one of the five essential natural plant growth regulators, including auxin, cytokinin, gibberellin and ethylene. It can be biosynthesized within the plant tissues and transported either within the route of phloem or via cell-to-cell transport (Wareing & Bradbeer, 1978).

It travels naturally in the plant body and provides several physiological responses such as leaf abscission, growth inhibition and degradative changes in senescence (Walton, Soofi, & Sondheimer, 1970). Besides, ABA is believed to take part in the nucleic acid metabolism. Particularly, Van Overbeek et al. (1967) demonstrated that ABA tended to inhibit the biosynthesis of nucleic acid, especially DNA, in Lemna. Another credit contributed by Villiers (1968) has showed the evidence that ABA inhibits the nucleotides uridine and thymidine incorporation into nucleic acids of Fraxinus embryos.

In addition, ABA inhibits the plant cell growth by its natural ability of modifying the cell membrane properties (Wareing & Bradbeer, 1978). It is comprehended as with the presence of ABA, potassium absorption may be mediated through inhibition of proton excretion by the cell (Wareing & Bradbeer, 1978). Therefore, this causes the inhibition of segment development of the entire plant by the reduction of plant cell wall (Kutschera & Schopfer, 1986).

Under the high concentration of ABA, Tradescantia virginiana grew with smaller stomates, compared to the control group (Franks & Farquhar, 2001). The production of ABA will be slowly accumulated in the leaves subsequently resulting in the physiological changes including the