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Abstract  

Approximation of free-form shape is essential in numerous engineering 

applications, particularly in automotive and aircraft industries. Commercial 
CAD software for the approximation of free-form shape is based almost 

exclusively on parametric polynomial and rational parametric polynomial. The 

parametric curve is defined by vector function of one independent variable   

R(u) = (x(u), y(u), z(u)), where 0≤u≤1. Bézier representation is one of the 
parametric functions, which is widely used in the approximating of free-form 

shape. Given a string of points with the assumption of sufficiently dense to 

characterise airfoil shape, it is desirable to approximate the shape with Bézier 

representation. The expectation is that the representation function is close to the 

shape within an acceptable working tolerance. In this paper, the aim is to 
explore the use of manual and automated methods for approximating section 

curve of airfoil with Bézier representation. 

Keywords: Shape approximation, Parametric polynomial, Bézier representation,  

                           Free-form shape. 

 

 

1.  Introduction 

Before the advent of the computer, section of curves had been constructed by full-

scale manual drawing, particularly for air-craft industry during Second World 

War. Constructing the full-scale drawing is a time consuming task, even for 

highly skilled draughtsmen. In addition, storage of full-scale manual drawing is 

practically inconvenient.  

With the advent of computer, many of mathematical techniques were 

developed, mostly departing from the concept of manual drawing [1]. The 

fundamental idea is to develop parametric polynomial to represent the curve 

shape which is defined by vector function of one independent variable  R(u),  where  
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Nomenclatures 
 

)(uBn
i  Bernstein polynomial 

d Maximum shortest distance, m 

f Minimising function 

k0, k3 Scaling factors 

Pi Data Points 

R(u) Parametric function 

Vi Control points 

R(u) = (x(u), y(u), z(u)), where  0≤u≤1. One of the parametric polynomials - 

Bézier representation, has been widely used to address curve shape 

approximation problem [2-5].  

There is a number of research has been carried out in airfoil design by using 

Bézier representation. For designing airfoil shape, Bézier representation has been 

used to design a medial curve for the construction of entire airfoil shape [6]. Bézier 

representation offers simple interactive shape modification and computationally 

efficient interrogations [7], which has been used to replace the existing 

mathematical formulation for the design of airfoil shape based on prescribe 

aerodynamics requirement [8]. Furthermore, an aerodynamic investigation shows a 

promising result for the airfoil shape is designed by Bézier representation [9]. 

Therefore, Bézier representation plays a significant role in the design of airfoil, 

where geometric shape dominates the overall performance [10-12]. 

It is noted that the above mentioned literatures focused on aerodynamic 

performance of airfoil shape. In this paper, the attention is turning to the 

geometric aspect of airfoil shape. The starting point of the research is based on a 

string of points with the assumptions of sufficiently dense to characterise airfoil 

shape as shown in Fig. 1. The aim of this paper is to use manual and automated 

methods to approximate the airfoil shape with Bézier representation. The 

expectation is that the representation function is close to the shape within an 

acceptable tolerance. It is questionable that what should be the acceptable 

tolerance. In this paper, the acceptable tolerance is based on machining practice, 

which is within 0.1 mm [13]. Apart from satisfying the tolerance, the smooth 

transition of the curve shape is desirable. 

 

Fig. 1. Data Points that Characterising Airfoil Shape. 

The remaining sections of this paper are organized as follows. Section 2 

introduces the Bézier curve representation and highlights its properties. Section 3 
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explains the manual method of approximating the airfoil shape and discusses the 

significance of graphical results generated by manual method. Section 4 presents 

the underlying mathematics for the automated method to approximate the airfoil 

shape, and then the corresponding graphical results will be discussed. Section 5 

summarise the overall achievement of the research and reviews critically the 

performance of the approximation methods.  

 

2. Definition and Properties of Bézier Curve  

Bézier representation is developed by a mechanical engineer from Renault Car 

Company in seventies [14]. The underlying idea is to formulate the parametric 

polynomial in such a way that the shape control parameters are explicitly defined 

by control points which are not necessarily lie on the curve. A parametric Bézier 

curve of degree n is defined as follow: 

∑=
=

n

i
i

n
i uBu

0

)()( VR , 10 ≤≤ u                               (1) 

where Vi are the control points and )(uBni is the Bernstein polynomial. 

ini
in

n
i uuCuB

−−= )1()( , ni ≤≤0  

In this paper, the cubic Bézier curve (n = 3) will first be used, which is the 

lowest degree of Bézier curve that allows the control of end tangent vectors. The 

cubic Bézier curve is expressed as follow: 

3
3

2
2

1
2

0
3

)1(3)1(3)1()( VVVVR uuuuuuu +−+−+−=                            (2) 

The example of cubic Bézier curve is shown in Fig. 2. Cubic Bézier curves 

have many important properties that are useful for the approximation of airfoil 

shape, which are given as follows: 

 

Fig. 2. Cubic Bézier Curve with Control Points. 

• V0 and V3 are the two endpoints of the curve segment. This can be proved 

when substituting u = 0 and u = 1 respectively in Eq. (2). 

• The convex hull property confines the curve to be lied within the polygon 
formed by the control points V0, V1, V2  and V3, which provides clue for 

the size limit of the curve. 
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• V1 and V2 are the two inner control points (see Fig. 2) and are located on 

the tangent vectors on the curve at V0 and V3, respectively. That is if k0 

and k3 are scalars, we have 

0001 k×∆+= VVV  

3332 k×∆+= VVV  

Subsequently, the quintic Bézier curve (n=5) will be used, which is expressed 

as follow: 

4
5

3
4

3
23

2
32

1
4

0
5 )1(5)1(10)1(10)1(5)1()( VVVVVVR uuuuuuuuuuu +−+−+−+−+−=    (3) 

Similar to cubic Bézier curve, the quintic Bézier curve possess the 3 properties
 

as highlighted before. In particular, the tangent control is given by inner control 

points V1 and V4. In addition to that, the extra control of second derivative by 

inner control points V2 and V3 is provided. The procedures to approximate airfoil 

shape by using  cubic and quintic Bézier curves will be described in Section 3. 

 

3. Manual Method of Airfoil Shape Approximation 

In this paper, the cubic Bézier curve (n=3) is firstly considered, which is 

essentially the lowest degree of curve that allows tangent control for two end 

points. For quartic Bézier curve (n=4), the extra control point of V2 allows second 

derivative control for two end points. In this sense, second derivative of two 

different parameters (two end points) is controlled simultaneously by only one 

parameter V2. This unbalance controlled on second derivative is undesirable, even 

though quartic Bézier curve is higher degree than cubic Bézier curve.   

For quintic Bézier curve (n=5), there are two extra control points of V2 and 

V3. This allows full control of second derivative for planar curve, where the curve 

shape can be fully characterized as can be traced back to the theory of differential 

geometry [15]. Consequently, it is not necessary to consider higher degree Bézier 

curve. The focus is only on cubic and quintic Bézier curves are considered in this 

paper. The procedures to approximate the airfoil shape characterized by a string 

of points are shown in Fig. 3. 

Given a set of points Pi (i = 0, 1, 2, 3,…, N), the aim is to apply a Bézier curve    

(n =3, 5) that is able to approximate the set of points within an acceptable 

tolerance. Initially the end control points are adjusted to be coincided with the end 

data points. Subsequently, the internal control points k
0V ,…, k

n 1−V are manually 

adjusted and then the respective Bézier curve )(u
k

R can be calculated, where k is 

the number of iteration. The role of internal control points for both the cubic 

Bézier Curve and quintic Bézier Curve have been described in Section 2. 

Once the control points are adjusted, the discrepancies between the data points 

and Bézier curve are determined based on shortest distance. It is noted that the 

shortest distance is invariant under geometric transformation, i.e., translation and 

rotation. If the maximum shortest distance d is within tolerance of 0.1 mm, the 

Bézier curve )(uR  can then be finalized; otherwise the internal control points 

need to be readjusted. 
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Fig. 3. Procedures of Approximating Airfoil Shape. 

The method of determining maximum shortest distance d can be found in [16].  

For determining the maximum shortest distance d, the first step is to discretize the 

curve )(ukR into a set of points )( iu
kR , where i = 0,1,2,…,m. The maximum 

shortest distance is defined in such a way that { }{ })(minmax i
k

i ud RP −=  . For 

the point Po ,  the idea is to use branch-and-bound search principle from Po  to the 

neighboring point set )(u i

k
R until the shortest distance { })(min i

k
i uRP −  is 

obtained.  For the remaining of the points Pi , the similar method to determine 

shortest distance is used. Once all the shortest distances from Pi to )(u i
kR  are 

determined, the maximum shortest distance d is essentially the greatest value 

among all the shortest distances. 

In the following subsections, the manual method will be applied to 

approximate the airfoil shape by using cubic and quintic Bézier Curves. 

Subsequently, the generated graphical results will be discussed. 

 

3.1. Airfoil shape approximation by cubic Bézier curve 

This subsection discusses the approximation results of air-foil by cubic Bézier 

curve The resulting control points are given by V0(1.9,1), V1(0.8,1.1), V2(-0.6,4), 

V3(6.1,1) as shown in Fig. 4.  

The maximum error of 0.093 mm occurs at the flatter region of the airfoil as 

shown in Fig. 5, which is within the acceptable tolerance of 0.1 mm. The 

challenging part of the approximation is at the leading edge (see Fig. 5) of the 

airfoil shape, which mainly governs by control points V1 and V2. The control 

point V1 deals with the tangent of first point (see Fig. 5), in which the bending 

direction of the curve is defined. 

As mentioned in Section 2, control point V2 supposes to be mainly governs the 

tangent at the last point as shown in Fig. 5. However, due to the sharp bend 

feature of leading edge, the flatter region of the airfoil shape need to be 

compromised for capturing the shape of leading edge region.  In this sense, the V2 

Input: 
A string of 

data points Pi 

(i = 0,2,3,…,N)  

Fix the end control 

points V0, Vn  (n = 3 

or 5) to coincide with 

the end points.  

Adjust internal control points

,…,  (n = 3 or 5) then 

the resulting Bézier Curve 

 can be obtained.  

Check the discrepancies 

Within tolerance Output: 

Finalize Bézier Curve R(u) 

Yes 

No 
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is simultaneously controlling the tangent at last point and capturing the shape of 

leading edge region. This cause the miss-capture of the leading edge region and 

the undesirable sudden transition is formed as shown in Fig. 5. 

 

Fig. 4. Resulting Cubic Bézier Curve that Approximating Airfoil Shape. 

 

Fig. 5. Enlargement View of the Approximating Airfoil Shape. 

 

From the approximation of airfoil shape with cubic Bézier curve, it is 

suggested that the curve do not have sufficient degree of freedom to capture the 

airfoil shape even though the maximum error of 0.093 mm is within an acceptable 

tolerance. Therefore, the quintic Bézier curve will be considered in subsection 

3.2, which provides higher degree of freedom in shape control.  

 

3.2. Airfoil shape approximation by quintic Bézier curve 

This subsection discusses the approximation results of air-foil by quintic Bézier 

curve The resulting control points are given by V0(1.9,1), V1(0.6,1.3), V2(0.9,2.2),   

V3(1, 3.2), V4(2.4, 3.2), V5(6.1,1)  as shown in Fig. 6. 

 

Fig. 6. Resulting Quintic Bézier Curve that Approximating Airfoil Shape. 

V3 

V2 

V1 V0 

V0 
V1 

V2 

V3 

V4 

V5 
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The maximum error of the approximation is 0.037 mm at the highly curved 

region as shown in Fig. 7, which has been significantly reduced if compared to 

the cubic Bézier curve approximation as discussed in subsection 3.1. In addition, 

the control point V2 provides the control of second derivative, which enables the 

curve shape to have smooth transition as shown in Fig. 7.  

 

Fig. 7. Enlargement View of the Approximating Airfoil Shape. 

The control point V3 is able to concentrate on capturing the shape of highly 

curved region. Whereas, the control point V4 is able to concentrate on capturing 

the flatter region. In this sense, the control points V3 and V4 address the problem 

of shape miss-capturing as discussed in Section 4. In short, the quintic Bézier 

curve has higher degree of freedom in shape capturing, which produce better 

shape approximation than cubic Bézier curve. Therefore, it could be worthwhile 

to explore the use of quintic Bézier curve for automated approximation of airfoil 

shape. The detail of the automated approximation will be presented in Section 4. 

 

4. Automated Method for Airfoil Shape Approximation 

The aim of this section is to present an underlying mathematics for automated 

approximation of airfoil shape, which avoids the steps of manual iteration on 

control points as described in Section 3. Considering a set of points Pi  (i = 0,1, 2, 

3,…, N), the idea is to use least squares approximation [17] so that the control 

points Vi (0,1, 2,..., 5) of quintic Bézier curve R(u) can be solved linearly.  

As of (3.2), the quintic Bézier curve can be written in the form of  

∑=
=

5

0

5 )()(
i

ii uBu VR ,  10 ≤≤ u                               (4) 

Satisfying that: 

• P0 = R(0) and PN = R(1) 

• The remaining Pk  are approximated in the least square sense, i.e., 

∑ −=
−

=

1

1

2
)(

N

k
ki uf RP                                (5) 

Maximum Error 
Smooth Transition 
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is a minimum with respect to the variables Vi (i = 1,…,4), the ku are parameter 

values. 

For the sake of convenient in mathematics manipulation, let 

Nkkkk uBuB PPPQ )()( 5
50

5
0 −−=  k = 1,…,N – 1                            (6) 

By substituting Eqs. (4) and (6) into Eq. (5), it can be obtained that 

∑ ∑−=
−

= =

1

1

2
4

1

5 )(
N

k i
ikik uBf VQ                 (7) 

For least square approximation, the idea is to minimize f .  

Let 0=
∂

∂

l

f

V
, where l = 1,… 4, it can then obtain 

0)()(2)(2
1

1

4

1

555 =∑ 







∑+−=

∂

∂ −

= =

N

k i
ikiklkkl

l

uBuBuB
f

VQ
V

 

which indicates  that  

∑=∑ 







∑

−

==

−

=

1

1

5
4

1

1

1

55
)()()(

N

k
kkli

i

N

k
kikl uBuBuB QV                              (8) 

Equation (8) is one linear equation in the unknowns V1,…, V4. For l = 1,… 4 

yields the system of 4 equations in 4 unknowns. For solving purpose, Eq. (8) can 

be written in matrix form 

( ) QV =BB
T                   (9) 

where B is the (N – 1) × 4 matrix of scalars 

















=

−− )()(

)()(

1
5
41

5
1

1
5
41

5
1

NN uBuB

uBuB

B

L

MOM

K

 

 

Q  is the vector of N – 1 points. 










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




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−

−
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and 

















=

4

1

V

V

V M  

It is noted that Eq. (9) is one coefficient matrix, with two set of unknowns (x, 

y coordinates). In order to solve Eq. (5) for the control points Vi (i = 1,…,4), the 
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host parameter values ku are determined based on chord length parameterisation. 

The resulting quintic Bézier curve is presented below. 

Automated approximation of airfoil shape by quintic Bézier curve 

This part of work discusses the approximation results of air-foil by quintic Bézier 

curve The resulting control points are given by V0(1.9,1), V1(-0.36,0.87), 

V2(1.81,5.98),   V3(4.35, -0.55), V4(4.32, 2.27), V5(6.1,1)  as shown in Fig. 8. 

The maximum error of 0.17 mm occurs at the flatter region as shown in          

Fig. 9, which does not meet the tolerance of 0.1 mm. In term of curve shape, there 

is an undesirable fit at the highly curve region and irregular transition at the flatter 

region as can be seen in Fig. 9. Compare to the manual approximation as 

discussed in Section 5, the result generated by automated approximation is not 

promising. This is due to the fact that the automated method does not able to 

capture the small change of local geometry. In this sense, the automated method 

performs in global fitting, where only overall error is taken into account 

regardless of local shape change. Even though the use of automated method is 

practically more convenient in curve approximation, the resulting approximation 

is not necessarily better than the manual method. 

 

Fig. 8. Resulting Automated Approximation of Airfoil Shape. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 9. Enlargement View of Automated Approximation of Airfoil Shape. 
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5. Conclusion 

The approximation of airfoil shape in cubic Bézier curve and quintic Bézier curve 

in manual method are discussed. Both the cubic and quintic Bézier curves 

approximations are able to satisfy the tolerance of 0.1 mm. However, cubic Bézier 

curve does not have sufficient degree of freedom to capture the shape of highly 

curve region. quintic Bézier curve provides second derivative control, whereby 

the shape of highly curve region can be captured.   

It should be emphasised that the consideration of airfoil shape approximation 

is not limited to satisfy the tolerance. Furthermore, the shape capturing capability 

needs to be taken into consideration. In conclusion, manual method 

approximation of quintic Bézier curve provides better shape approximation than 

that of cubic Bézier curve.   

The automated approximation of quintic Bézier curve has also been explored. 

The result is not promising if compare to that of manual method. It is due to the 

automated method only limited to approximate the curve by minimising overall 

error regardless of the nature of curve shape. Therefore, it can be concluded that the 

automated approximation is not necessarily better than the manual approximation.  

So far, the automated method is only based on minimising overall error. This 

is insufficient to produce desirable curve shape. To improve the automated 

method, further iterative mechanism need to be included with the consideration of 

local shape characteristic.   
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