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Abstract- Environmental pollution is a global crisis due to the anthropogenic activities. Conventional chemical analytical 
tools and biosensors are effective tools in environmental toxicant assessment. For whole cell biosensors, chlorophyll was a 
well-studied pigment as bioreporter for the presence of environmental toxicants, but other pigments were not widely 
reported. In this paper, the usage of another widespread photosynthetic pigments- carotenoids as bioreporter of 
environmental toxicant is discussed through a few possible biosensor designs, with the sensitivity, reproducibility and 
storability evaluated. The carotenoids are found to be good candidate as bioreporters as the pigments response was 
acceptable with dosage dependency. However, the storability was still an issue which a better immobilization or storage 
condition was the key to a better results. 
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I. INTRODUCTION 
 
Environmental pollution is a global crisis. 
Anthropogenic activities, such as the development in 
agriculture and industry, as well as the dumping of 
domestic wastes have released hazardous compounds 
into environment.  
Two types of most commonly knew pollutants are the 
metals and pesticides. Metals e.g. lead (Pb), cadmium 
(Cd), nickel (Ni), aluminium (Al), are poisonous to 
the floras and faunas, and will devastate humans’ 
health through direct contact or the food chain [1-4]. 
Pesticides e.g. 2,4-D and atrazine are useful in 
agriculture but at the same time, bring might bring 
negative impact to the environment and human in 
case of misuse [5, 6]. 
To date, many methods have been established to 
indicate the presence of these pollutants in 
environment, e.g. AAS and HPLS [7, 8]. However, 
the widespread of these pollutants makes the 
detection and monitoring work overwhelming. Many 
bio-sensing devises are developed and proved to be 
effective in the assessment effort [9-12]. These 
screening-effective devises might be useful with the 
combination of conventional chemical analytical 
tools. In whole cell biosensors, chlorophyll has been 
identified as one of the effective reporter for heavy 
metals and pesticides detection [13]. As a key 
component in photosynthesis, chlorophyll-related 
responses, such as the change in the level of oxygen, 
fluorescence, and the content of the pigment itself 
have been fully utilized in the screening of 
environmental pollutants [14-16].  
However, the potential of other photosynthetic 
pigments e.g. carotenoids and phycocyanin attracted 
less attention. In this article, the potential of one of 
the photosynthetic pigments- carotenoids is discussed 
along with the results obtained through a series of 
experiments conducted on different sources of 
carotenoids. 

II. CAROTENOIDS AS BIOREPORTER 
 
Carotenoids produce yellowish to red colours in 
photosynthetic organisms. These pigments are 
important as light harvester while protecting these 
organisms from reactive oxygen species [17, 18]. As 
light harvesting pigments, carotenoids can be 
detected with spectrophotometer at absorption 
wavelength between 400 nm to 480 nm. The recent 
research showed the potential of carotenoids 
contained in Daucus carota cells coupled with 
spectrometry detection in heavy metals assessment 
[19]. The results then was consolidated by the follow 
up experiments, which confirmed the change in 
carotenoids content in the cells after the exposure to 
copper (Cu), Pb, and zinc (Zn), and  effects of several 
factors e.g. pH, cell density, and the immobilization 
condition to the response were determined [20, 21]. 
The exposure of cyanobacteria to heavy metals 
recorded the change in carotenoids as well [22]. The 
immobilized Anabaena cylindrica showed sensitivity 
to Cu and Pb. The effect of cell age and density were 
found affecting the responses of the 
cyanobacteria.The design of a biopolymer entrapped 
carotenoids for the detection of heavy metals used the 
formation of biopolymer matrix to entrap the 
pigments, which the pigments reacted with the 
analyte solution to form emulsion at different rate and 
intensity, and brought changes of OD at the 
wavelength 450 nm [10]. 
 
III. SENSITIVITY 
 
A current research conducted confirmed good 
sensitivity of carotenoids towards metal ions. The D. 
carota cells used were immobilized by agarose and 
the change in carotenoids were indicated by 
spectrometry approach [20]. Linear detection ranges 
for both Pb and Cu tests were within 0.01 – 10.00 
mg/L, with the lowest detection limit of 0.01 mg/L 
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for both metals. The experiment showed the 
responses of cells were affected by the density of the 
cells, as well as the pH of the sample and the cell age. 
The plant cell showed higher sensitivity towards Cu 
exposure. Similar research was conducted with D. 
carota free cells yielded the identical trend of 
responses from carotenoids after the exposure to Cu, 
Pb, and Zn [21]. Another research done using 
naturally occurring carotenoids in cyanobacteria 
Anabaena cylindrica produced considerably good 
results [23], where the lab cultured cyanobacteria was 
immobilized and exposed to Cu and Pb, with the 
linear detection ranges of 0.01 – 10.00 mg/L for both 
metals. The experiment showed the cells from 
different growth phases could be potentially used for 
the metals detection as well. Similar to the plants 
cells, the cyanobacteria was more sensitive to Cu 
compared to Pb. When the research extended to the 
utilization of carotenoids in biopolymer biosensor, a 
promising results in the detection of Cu, Pb, Zn, and 
Al are produced, with majority of the detection 
ranges fall within 0.01 – 10.00 mg/L [10]. The 
sensitivity of a bioindicator can be defined from the 
slope of the linear detection range. As described by 
Wong and Wong [10], the carotenoids entrapped in 
biopolymer were most sensitive to Pb, followed by 
Zn, Al, and Cu. The carotenoids in free D. carota 
cells were found most sensitive to Pb, followed by Zn 
and Cu [21]. Immobilized D. carota however showed 
no significant difference in sensitivity between Cu 
and Pb [20]. Among different design and 
immobilization of bioindicator, the exposure time for 
the carotenoids in biopolymer was the shortest at 15 
minutes, while the exposure time of immobilized D. 
carota was found optimized at 75 minutes. The 
exposure time for the immobilized cyanobacteria A. 
cylindrica was however, was 24 hours, which might 
not be effective for rapid detection. Although tests 
conducted showed D. carota free cells responded to 
metals within 20 minutes of exposure, the free cells 
might decrease the portability and storability, thus 
reduce the practicality as biosensor. 
 

Table 1. Bioindicators using carotenoids for environmental 
applications 

 

III. REPRODUCIBILITY AND STORABILITY 
 
Reproducibility and storability are important in 
defining the practicality of a bioindicator, especially 
for the biosensing applications. Immobilized D. 
carota had good reproducibility with a standard 
deviation less than one percent (< ± 1%) for all the 
exposure tests, with n = 3 [20]. However, the 
storability test for 40 days exhibited significant 
reduce in response, especially in the first 10 days of 
storage. The test with D. carota free cells showed 
lower reproducibility of approximately ± 2 – 5 % of 
standard deviation [21]. The results suggested that the 
immobilization brought the biological component 
closer to the transducer and stabilized the 
transmission of biological signals to the transducer. 
Due to the nature of the culture, the storability of the 
D. carota free cells couldn’t be conducted. 
For carotenoids in biopolymer, the responses to all 
metals tested showed considerably good 
reproducibility of ± 0.2 – 2.8 %. The good 
reproducibility showed immobilization was a good 
practice to yield better performance, which was 
agreeable by several previous researches on 
biosensors development [9, 20, 24].  
 
IV. FUTURE DEVELOPMENT 
 
The research on the change of carotenoids to the 
presence of environmental pollutants will be extended 
to the photosynthetic organisms collected from the 
natural environment. Currently, experiment on 
Spirogyra collected showed promising carotenoids 
responses to two types of pesticides. This research 
opened the door of utilizing native photosynthetic 
organisms for in situ detection of the pollutants. The 
responses of carotenoids to one of the pesticides, 
atrazine is depicted in Figure 1. The results are 
complemented by another research conducted using 
consortium of algae and cyanobacteria collected from 
fish culturing pond showed similar results with 
carotenoids in these consortium changed after being 
exposed to environmental pollutants (Figure 2). 

 
Figure 1. The responses of carotenoids to different 

concentrations of atrazine at different exposure time. 
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Figure 2. The responses of carotenoids in consortium to 

different concentration of Pb. 
 

Storability is always an issue for cell biosensors, as 
the performance of the biosensors will decrease 
together with the degradation of the cells. Cell 
biosensors could useful for screening all types of 
pollutants, without elucidating the type of the 
pollutants. This can be an advantage for the cells to 
act as first level of indicator before the suspected 
sample being sent to the lab for further analysis. 
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