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Abstract

In this thesis comparison between Fast Focus Mode (FFM) and Slow
Focus Mode (SFM) in plasma focus devices is studied. For INTE PF machine, results
of numerical experiments based on Lee Model Code on Deuterium, Neon and Argon
in the pressure range of 1Torr to 14 Torr D, 1 Torr to 5.5 Torr Ne and 0.2 Torr to 2.4
Torr Ar show that as a rule-of-thumb, diameter-optimized SFM is considered to
occur when fast plasma stream speed generated by pinch column is equal to the peak
axial phase speed. Results of speed factor, FIB energy, FPS energy, FIB damage
factor, plasma footprint radius for FFM and SFM at different pressures of D, Ne and
Ar are presented. These results may be used to predict different applications of both
modes: especially in the fields of nuelear fusion reactor first wall materials and its
related investigations by time-matched FFM; and thin film nano-material synthesis
by diameter-optimized SFM. Design and construction of a PMT-Scintillator
diagnostic system for D-D fusion Neutron time-of-flight measurements (TOF) in
INTI PF machine are presented. In addition, a fast 50 Q Faraday Cup was designed
and fabricated to enable time-of-flight TOF measurements of pulsed ion beam of
INTI PF. The shortest FWHM for ion pulse captured by Faraday Cup was 27 ns. In
this research the correlation of the ion beam energy between TOF measurements and
Lee Model Code with different kind of filling gases such as D, Ne, Ar, Kr and Xe is
presented. The results show there is acceptable correlation between TOF
measurements and Lee Model Code. The maximum most common energy for D, Ne,
Ar, Kr and Xenon ions generated by pinch column, detected by Faraday Cup were
67 keV, 485 keV, 1.2 MeV, 3.9 MeV and 6 MeV consistent with the values
predicted by Lee Model Code. In the cases of Ar, Kr and Xe, Radiative Collapse
effect leads to very small pinch radius size which is calculated by Lee Model Code.
In order to study the application of INTI plasma focus machine in the field of
advanced material sciences, some experiments such as graphite deposition on silicon
wafer, hardening by nitriding and also fusion first wall material research by using
tungsten targets are presented. Conceptual design of 160 kJ DuPF as a biggest
plasma focus facility in the world for material research, by using Lee Model code in
both FFM and SFM at different pressures of different kind of filling gases such as D,
Ne and Ar is presented. It seems that reliable SFM for all gases occur when the ratio
of FPS speed to axial velocity is near to 1. Finally, industrial detail design of DuPF
and its parts by using SolidWorks software is presented.
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CHAPTER 1

Introduction and Literature Review

The plasma focus is typically operated in a coaxial geometry with an
intense pinch mode. The dynamics comprises an axial acceleration phase, followed
by a radial phase consisting of a fast compression, a pinch and an explosive pinch
disruption phase. During these two last phases intense radiations are emitted
including x-rays and powerful axially directed beams of ions and electrons. The
break-up of the pinch also launches axially propagating fast plasma streams. This
intense pinch mode is the subject of many studies and much research documentation.
The intense radiations and beams and plasma emissions have many applications
including fusion neutron generation and more recently the fabrication and deposition
of advanced materials and the testing of potential wall materials in fusion-relevant

situations.

The DPF facility acts as a type of plasma accelerator [I, 2] that
produces directed hot (7, ~ 1 keV) fast (v > 107 cm/s) dense (= 10" to 10" cm’
? ) plasma streams, high energy ion (£; = 0.01 to 100 MeV) and electron (%, = 0.01 to
1.0 MeV) beams in addition to soft (£, ~ 0.1 to 10 keV) and hard (£, ~ 10 to 1000
keV) X rays and fusion neutrons (E, ~ 2.45 and 14 MeV).

Dense Plasma Focus devices, compared with other thermonuclear

devices, have a number of important applications {3, 2]:

e These devices provide an opportunity to expose different materials and objects to
pulsed radiations of various types — ion, electron, plasma, X ray, neutron and
shock wave of high-power flux density (up to 10" W/em? for fast electrons, 102
W/cm? for fast ions, plasma streams and X ray photons and up to 10° n/em? for
neutrons) with pulse duration in the range 107 to 10 5. Thermal loads in these
devices produced by the above-mentioned streams and a discharge current may
reach magnitudes up to 10'® MW/m? with the characteristic time of action up to

about 10™ s.



Because most types of radiation generated by DPF are of penefrating nature

these devices can produce important volumetric effects (in contrast to lasers).

o They enable the experimenter to choose the specific distribution of pulsed
energy between all the above-mentioned types of ionizing radiation — soft and
hard X rays, neutrons, electron, ion and plasma beams. This is possible because
energy flux density may be significantly different for each type of radiation

depending on the mode of operation of the device.

e These streams in DPF devices can be separated in time due to different velocities

of their {quasi-)particles.

o
o These beams in DPF devices can also be separated in space due to different
angular distributions and by application of a magnetic ficld or by using their

dissimilar Linear Energy Transfer (LET).

These intense and varied radiations give important opportunities for
new and sometimes unusual applications in pulsed radiation physics and chemistry
in general, and in different branches of material sciences (radiation material science,
nanotechnologies, dynamic quality control of machines and mechanisms during their

operation, neutron activation analysis, etc.) in particular.

The physics of interaction of high-power pulses of radiation
generated in different fusion devices with materials is especially important for study
of damage produced in elements of these installations including the discharge
chamber of the DPF itself, but specifically the plasma-facing walls of thermonuclear
fusion installations with inertial (laser, wire-array Z-pinches and heavy ion fusion)
and magnetic (Tokamak and Stellarator) plasma confinements. In the lafter case
DPF devices can simulate radiation sources, which are typical for the stressed

regimes of the reactor’s operation (EL.Ms, VDEs, disruption instability, etc.).

More recently it has become apparent that for the purpose of
materials deposition and fabrication of nano-materials, the intensity of the radiation
and beams may need to be controlled. It has been suggested that it may even be
beneficial for some situations to eliminate or greatly reduce charged particle beams;

for example for the deposition of certain nano-materials, especially from the point of



view of spatial homogeneity. Thus the reduction of the intensity of the pinch or even

the elimination of the pinch sub-phase may be of use for such situations [4].

In order to extend the usefulness of the plasma focus for applications,
it is important to better understand the fundamental processes in hot plasmas, so as
to be able to optimize a certain device for a specific application. The aim of this
project is to collate known behavior of the Fast Focus Mode (FFM) and investigate
the behavior of Slowu Focus Mode (SFM) of dense plasma focus [4] and compare
their properties with a view to improve performance for material science

applications.

In existing plasma focus facilities it is the established practice to
maximize the yield in the production of any desired radiation. This in almost all
cases means adjusting the plasma focus for intense compression [5] in a selected
gas; for example for fusion neutrons, Deuterium is selected; for SXR lithography,
neon is selected [6] , for micro-machining, argon or a Deuterium-argon or argon-
krypton mixture [7]. On the other hand for good deposition conditions it may be
necessary to reduce focus intensity; using the focusing not so much for its explosive
emission of intense radiation but for its storage of plasma energy and a subsequent
release of the stored energy into streaming plasma. Using Lee Model code it has
been recently developed the first modeling tool for the computation of plasma ion
beams and high-speed plasma streams from the plasma focus [8, 9]. One of the
results shows that a low-voltage, high-energy plasma focus has big advantages as a
source of fast ion beams and high-speed plasma streams. In addition its dynamics
could also be slowed down and its high energy be used to produce a longer more
uniform pulse for materials fabrication. The SFM may thus be most useful in

producing fast plasma stream FPS for nano-materials Fabrication {10, 11].

As part of this research we will explore the use of a single plasma

focus device with two interchangeable anodes to produce two contrasting modes for:

I.  Intense ion beam and streaming plasma pulses for damage studies of
potential fusion reactor wall materials, particularly of plasma-facing walls.
1. High power long duration uniform flow of plasma ions and streaming plasma

pulses for synthesis of nano-materials



Before continuing with the Introduction and Literature Review we first specify

cur Problem Statement and Objectives as follows.

1.1 Problem S{atement

What is predicted by l.ee Model Code for FFM and SEM states in
INTI PF machine? What are the neutron time of flight measurements in INTI PF
machine during FEM? Is there any correlation between Lee Model Code and ion
time of flight measurements in INTI PF machine? What are the applications of FFM
and SFM in INTI PF machine? What are the FFM and SFM results for high energy
plasma focus device using Lee Model Code? Is it possible to design a 160 kI DuPF

for material applications?
1.2 Research Objectives

The objectives of this project are to conduct numerical and
experimental studies of FFM and SFM of INTI PF machine using Lee Cade, then to
conduct numerical experiments and parameter design of the 160 kJ Dual plasma
focus and finally to produce the complete industrial detail design and drawing of the
Dual plasma focus with interchangeable electrodes by SolidWorks Software.
Subsidiary objectives are to improve diagnostic capabilities by designing and
constructing a photomultiplier-plastic scintitlator system for D-D fusion neutrons
and Hard X-Ray TOF measurements and a Fast Faraday Cup for ion beam

measurements.
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