BETA-GLUCOSIDASE ACTIVITY AND LINALOOL PRODUCTION IN THE FERMENTATION OF PINEAPPLE WASTE

MICHELLE POH SIN YI

DISsertATION SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF BACHELOR OF BIOTECHNOLOGY (HONOURS)

FACULTY OF SCIENCE, TECHNOLOGY, ENGINEERING AND MATHEMATICS
INTI INTERNATIONAL UNIVERSITY
PUTRA NILAI, MALAYSIA

2015
NON-PLAGIARISM DECLARATION

By this letter I declare that I have written this dissertation completely by myself, and that I have used no other sources or resources than the ones mentioned.

I have indicated all quotes and citations that were literally taken from publications, or that were in close accordance with the meaning of those publications, as such. All sources and other resources used are stated in the references.

Moreover I have not handed in a dissertation similar in contents elsewhere.

In case of proof that the dissertation has not been constructed in accordance with this declaration, the Faculty of Science, Technology, Engineering and Mathematics has the right to consider the research proposal/dissertation as a deliberate act that has been aimed at making correct judgment of the candidate's expertise, insights and skills impossible.

I acknowledge that the assessor of this item may, for the purpose of assessing this item,

- reproduce this assessment item and provide a copy to another member of the University; and/or,
- communicate a copy of this assessment item to a plagiarism checking service (which may then retain a copy of the assessment item on its database for the purpose of future plagiarism checking).

In case of plagiarism the examiner has the right to fail me and take action as prescribed by the rules regarding Academic Misconduct practiced by INTI International University.

Michelle Poh Sin Yi
Name

I1200 1726
I.D.Number

Signature

11th May 2015
Date
ACKNOWLEDGEMENT

I would like to express my gratitude to my supervisor, Miss Emily Quek Ming Poh for her continuous guidance, support, patience and encouragement throughout my final year project period. I would also like to thank all my lecturers throughout my academic years in INTI International University for all the guidance and knowledge. My sincere gratitude goes to the Laboratory Members of INTI International University for the continuous support in the laboratory while I conducted my final year project and I would like to thank all my friends and my partner for the moral support, encouragement and guidance throughout my final year project. Lastly, I would like to thank my parents for their live, patience and sacrifices and guidance throughout my academic year and for all the encouragement for my final year project.
ABSTRACT

Linalool is one of the most interesting acyclic terpene alcohols, both from the point of view of academic interest and of practical value. Studies have shown that some essential oils which contain linalool have antimicrobial, antibacterial and antiviral effects. In this study, the production of linalool by fermentation of the pulp and peel of pineapple Josapine using *Saccharomyces cerevisiae* was tested. Fermentation was carried out for 24 hours and 48 hours separately for both microbial and natural fermentation. The cell density and pH of the fermented broths were recorded with intervals of 0, 24 and 48 hour(s) respectively. Linalool was extracted from the fermentation broths by using dichloromethane as the organic solvent. Linalool separation was carried out by using adsorption chromatography. The linalool obtained from the separation was quantified using UV-visible spectrophotometer at 300 nm. Based on the results, the activity of β-glucosidase showed an increase in activity, however, the yield of linalool produced through both microbial and natural fermentations of pulp and peel did not show any significant differences from 0 hour to 48 hours of fermentation. Although linalool was successfully extracted, the amount did not reflect β-glucosidase activity measured in both fermentations.
TABLE OF CONTENT

DECLARATION PAGE
ACKNOWLEDGEMENT ii
ABSTRACT iii
TABLE OF CONTENT iv
LIST OF TABLES v
LIST OF FIGURES viii
LIST OF ABBREVIATIONS ix
CHAPTER
1. INTRODUCTION 1
2. LITERATURE REVIEW 3
 2.1 Terpenes 3
 2.2 Linalool 4
 2.3 Beta-glucosidase 5
 2.4 Fermentation 5
 2.5 Pineapple Waste as The Substrate for Fermentation 6
3. MATERIALS AND METHODS/METHODOLOGY 7
 3.1 List of Materials 7
 3.2 Autoclave of Apparatus 7
 3.3 Preparation of *S. cerevisiae* Inoculum 7
 3.3.1 Preparation of YPD Broth 7
 3.3.2 Inoculation of *S. cerevisiae* Cells 8
 3.4 Determination of Cell Density in *S. cerevisiae* Cell Inoculum 8
 3.4.1 Preparation of Trypan Blue 8
 3.4.2 Dilution of *S. cerevisiae* Inoculum 9
 3.4.3 Determination of Viable and Non-Viable Cells in 9
 S. cerevisiae Inoculum
 3.5 Preparation of Peel and Pulp of Pineapple Josapine 11
 3.5.1 Preparation of Clorox Solution 11
 3.5.2 Sterilization of Pineapple Josapine 11
 3.5.3 Preparation of Pineapple Josapine Peel 11
 3.5.4 Preparation of Pineapple Josapine Pulp 11
 3.6 Fermentation Conditions 12
 3.7 Measurement of pH of Fermentation Broth 12
3.8 Sample Collection of Fermentation Broth 14
3.9 Beta-Glucosidase Assay 14
 3.9.1 Preparation of Reaction Mixture 14
 3.9.2 Determination of Wavelength for Maximal Absorbance 15
 3.9.3 Preparation of pNP Standard Curve 15
 3.9.4 Determination of Quantity of pNP 15
3.10 Extraction of Linalool 15
 3.10.1 Preparation of Extraction Solvent 16
 3.10.2 Linalool Extraction 16
3.11 Separation of Linalool 16
 3.11.1 Preparation of Resin 16
 3.11.2 Preparation of Linalool Stock 17
 3.11.3 Fractionation of Linalool-Extraction Layer on 17
 XAD-2 Resin (Amberlite)
3.12 Quantification of Linalool 17
 3.12.1 Determination of Wavelength for Maximal Absorbance 17
 3.12.2 Preparation of Linalool Standard Curve 18
 3.12.3 Determination of Quantity of Linalool 18
3.13 Statistical Analysis of Data 18

4. RESULT 19
 4.1 Determination of Cell Density of S. cerevisiae Cell Inoculum 19
 4.2 Determination of Viable and Non-Viable Cells in S. cerevisiae 19
 Inoculum
 4.3 Determination of pH of Fermentation Broth 21
 4.4 Determination of Cell Viability and Cell Density of 21
 Fermentation Broth
 4.5 Quantification of pNP 23
 4.5.1 Construction of Maximal Absorbance Curve 23
 4.5.2 Construction of pNP Standard Curve 23
 4.5.3 Amount of pNP Liberated from Fermentation of 23
 Josapine Pulp and Peel
 4.6 Quantification of Linalool 23
 4.6.1 Construction of Maximal Absorbance Curve 23
 4.6.2 Construction of Linalool Standard Curve 28
 4.6.3 Amount of Linalool Extracted from the Fermentation 28
 Broth of Josapine Pulp and Peel
 4.7 Statistical Analysis 28

5. DISCUSSION 31
 5.1 Cell Viability of S. cerevisiae in Fermentation of 31
 Josapine Pulp and Peel
 5.2 Effects of Fermentation of S. cerevisiae on the Production 31
 Of Linalool
 5.3 Effect of pH of The Fermentation Broth on The Growth 32
 of S. cerevisiae Cells
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Content of different dilution factors of yeast inoculum after 24 hours of incubation.</td>
<td>10</td>
</tr>
<tr>
<td>3.2</td>
<td>Dilution of S. cerevisiae cells for viable and non-viable cells counting.</td>
<td>10</td>
</tr>
<tr>
<td>3.3</td>
<td>Contents of conical flask for different fermentation conditions and different incubation period</td>
<td>13</td>
</tr>
<tr>
<td>4.1</td>
<td>Optical density at 600 nm (OD<sub>600</sub>) of different dilution of S. cerevisiae inoculum after 24 hours incubation</td>
<td>20</td>
</tr>
<tr>
<td>4.2</td>
<td>Viable and non-viable S. cerevisiae cells inoculum after 24 hours incubation</td>
<td>20</td>
</tr>
<tr>
<td>4.3</td>
<td>pH changes of fermentation at 0-hour, 24-hour and 48-hour of Josapine pulp and peel with and without S. cerevisiae</td>
<td>22</td>
</tr>
<tr>
<td>4.4</td>
<td>Percentage (%) viability of S. cerevisiae cells during fermentations of Josapine pulp and peel with and without S. cerevisiae inoculum</td>
<td>22</td>
</tr>
<tr>
<td>4.5</td>
<td>Cell density of S. cerevisiae cells during fermentations of Josapine pulp and peel with and without S. cerevisiae inoculum</td>
<td>22</td>
</tr>
<tr>
<td>4.6</td>
<td>Concentration of pNP liberated from pNPG liberated in fermentation of Josapine pulp and peel with and without S. cerevisiae</td>
<td>26</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Absorbance of various concentration of pNP (1 mg/mL – 10 mg/mL) with different wavelengths (280 nm – 650 nm).</td>
<td>24</td>
</tr>
<tr>
<td>4.2</td>
<td>Various concentration of pNP (1 mg/mL – 10 mg/mL) at absorbance 400 nm.</td>
<td>25</td>
</tr>
<tr>
<td>4.3</td>
<td>Absorbance of various concentration of linalool standard solution (1 mg/mL – 10 mg/mL) with different wavelengths (200 nm – 650 nm).</td>
<td>27</td>
</tr>
<tr>
<td>4.4</td>
<td>Various concentration of linalool standard solution (1 mg/mL – 10 mg/mL) at absorbance 300 nm.</td>
<td>29</td>
</tr>
<tr>
<td>4.5</td>
<td>Various concentrations of linalool extracted from the different fermentation conditions of Josapine pulp and peel</td>
<td>30</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------------------</td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>percentage</td>
<td></td>
</tr>
<tr>
<td><</td>
<td>less than</td>
<td></td>
</tr>
<tr>
<td>≤</td>
<td>less than or equal to</td>
<td></td>
</tr>
<tr>
<td>=</td>
<td>equal</td>
<td></td>
</tr>
<tr>
<td>μL</td>
<td>microliter</td>
<td></td>
</tr>
<tr>
<td>ANOVA</td>
<td>analysis of variance</td>
<td></td>
</tr>
<tr>
<td>A₆₀₀</td>
<td>absorbance at 400 nm</td>
<td></td>
</tr>
<tr>
<td>C₅</td>
<td>five carbons</td>
<td></td>
</tr>
<tr>
<td>C₅H₈</td>
<td>isoprene</td>
<td></td>
</tr>
<tr>
<td>cells/mL</td>
<td>cells/millilitre</td>
<td></td>
</tr>
<tr>
<td>cm</td>
<td>centimeter</td>
<td></td>
</tr>
<tr>
<td>df</td>
<td>degrees of freedom</td>
<td></td>
</tr>
<tr>
<td>DMAPP</td>
<td>dimethylallyl diphosphate</td>
<td></td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
<td></td>
</tr>
<tr>
<td>F value</td>
<td>Fisher's value</td>
<td></td>
</tr>
<tr>
<td>F₉₉₁</td>
<td>F critical value</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
<td></td>
</tr>
<tr>
<td>IPP</td>
<td>isopentyl diphosphate</td>
<td></td>
</tr>
<tr>
<td>IUPAC</td>
<td>International Union of Pure and Applied Chemistry</td>
<td></td>
</tr>
<tr>
<td>LAF</td>
<td>laminar air flow</td>
<td></td>
</tr>
<tr>
<td>MARDI</td>
<td>Malaysian Agriculture Research and Development Institute</td>
<td></td>
</tr>
<tr>
<td>MEP</td>
<td>2-c-methyl-D-erythritol-4-phosphate</td>
<td></td>
</tr>
</tbody>
</table>
mg milligram
mg/dL milligram/decilitre
mL millilitre
MPIB Malaysian Pineapple Industry Board
MS mean square
MTS monoterpane synthase
MVA mevalonic acid
n=2 duplicates
n=3 triplicates
Na₂CO₃ sodium carbonate
NaCl sodium chloride
NaOCl sodium hypochlorite
nm nanometer
°C degrees Celsius
OD₆₀₀ optimal density at 600 nm
P value a probability with a value ranging from zero to 1
PBS phosphate buffered saline
pH potential of hydrogen
pNP p-nitrophenol
pNPG p-nitophenyl-β-D-glucopyranoside
rpm revolutions per minute
S. cerevisiae *Saccharomyces cerevisiae*
SS sum of squares
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>UV</td>
<td>ultraviolet</td>
</tr>
<tr>
<td>v/v</td>
<td>volume/volume</td>
</tr>
<tr>
<td>w/v</td>
<td>weight/volume</td>
</tr>
<tr>
<td>w/w</td>
<td>weight/weight</td>
</tr>
<tr>
<td>YPD</td>
<td>Yeast Extract-Peptone-Dextrose</td>
</tr>
<tr>
<td>α</td>
<td>significance level</td>
</tr>
<tr>
<td>β</td>
<td>beta</td>
</tr>
</tbody>
</table>
1.0 CHAPTER 1

INTRODUCTION

One of the most common monoterpane alcohol or terpineol found in nature is linalool. Linalool (IUPAC: 3,7-dimethyllocta-1,6-dien-3-ol) is made up of two isoprene units which have a molecular formula of C₁₀H₁₆ (Pubchem, 2013). Linalool is an isomer of geraniol and nerol. The only thing that differentiates linalool from geraniol and nerol is the location of the hydroxyl functional group (Agarwal, 2010). Linalool has a hydroxyl functional group on the third carbon, which makes linalool a tertiary alcohol (Peace Rhind, 2012). Due to its scent and flavouring properties, linalool was commonly added to processed food and beverage as flavouring, fragrance agent in cosmetics, perfumes and shampoo as well as household detergents. Besides, linalool often used to aid sleep and relaxation in aromatherapy as well as the synthesis of vitamin E in the body (Colbert, n.d.).

Linalool is normally obtained by undergoing fractional distillation and consequent rectification from oils of Cajenne rosewood, Brazil rosewood, Mexican linaloe, Cinnamomum camphora and coriander seeds (Burdock & Fenaroli, 2009). It can also be produced synthetically from geraniol and nerol by ortho-vanadate-catalysed isomerization (Kroschwitz, 2007). However, fractional distillation is relatively expensive due to the maintenance of the fractionating column. The process involved high temperature and high pressure which makes this method extremely dangerous (Kinyanjui, n.d.). A recent study was done on the selection and optimization of engineered-yeast strains for the production of foreign monoterpene, linalool (Rico, Pardo & Orejas, 2010). It showed that there was a gradual increase of recombinant linalool production, which made Saccharomyces cerevisiae a suitable host to synthesize various monoterpenes by expressing the suitable plant monoterpene synthases (MTS) in exchange for linalool synthase. This involved DNA manipulations, construction of plasmids and analysis of monoterpenes (Rico, Pardo & Orejas, 2010).
Nowadays, most industrial-scale fermentation uses feed stocks containing high sugar concentration as the growth medium. This would reduce the production cost compared to the use of basal medium such as nutrient agar or nutrient broth. Among all the yeast species, *S. cerevisiae* is the most often used yeast species in fermentation process due to its rapid growth rate, high fermentation rate and tolerate high concentration of ethanol as well as low pH (Matsushika, Goshima & Hoshino, 2014). According to Malaysian Pineapple Industry Board (MPIB), Malaysia is one of the world pineapple suppliers. It is reported that in Malaysia, there are approximately 96,957 metric tonnes of fresh pineapple production and 17,165 metric tonnes of canned pineapple produced in 2011 (Freshplaza, 2013). Linalool can be extracted from the fermentation of pineapple variety Josapine (Thiri, 2013; Ruhil, 2014). Josapine was introduced by Malaysian Agriculture Research and Development Institute (MARDI) in 1996 (Mohammed Selamat, 1996). A fresh ripe pineapple fruit has high content of vitamin C, total sugar, starch, ascorbic acid as well as volatile aroma compound that responsible for the fragrance of pineapple. Hence, this makes Josapine an ideal medium to be used in this study for linalool production. Studies were done on the linalool production of fermentation of Josapine juice and peel. However, no study was carried out on the β-glucosidase activity of fermented pineapple.

The aims of this study were:

- to carry out microbial and natural fermentation on pulp and peel of Josapine,
- to determine and compare the activity of beta (β)-glucosidase in both microbial and natural fermentation using p-nitrophenyl-β-D-glucopyranoside (pNPG) as substrate,
- to quantify the amount of β-glucosidase using spectrophotometric method and relate it to the amount of linalool present in pulp and peel of Josapine, and
- to quantify the amount of linalool extracted from pulp and peel of Josapine by spectrophotometric method.
2.0 CHAPTER 2

LITERATURE REVIEW

2.1 TERPENES

Terpenes, also referred to as terpenoids, are the biggest group of natural compounds. They are mainly present in plants as ingredients of essential oils. Most terpenes are hydrocarbons while some are oxygen-containing compounds such as alcohols, aldehydes or ketones (Kriste, 2003). According to literature, there are approximately 30,000 terpenes known at present (Breitmaier, 2006). All terpenes are synthesized from isoprene, a five-carbon (C₅) building blocks which build up the carbon skeleton of terpenes (Zhang & Demain, 2005).

There are different types of terpenes which are differentiated by the number of isoprene units present. Those terpenes are hemi- (C₅), mono- (C₁₀), sesqui- (C₁₅), di- (C₂₀), sester- (C₂₅), tri- (C₃₀), tetra- (C₄₀) and polyterpenes (C₅)n where n > 8 (Breitmaier, 2006). Monoterpenes, sesquiterpenes, diterpenes, triterpenes and tetraterpenes are more common than other terpenes. Monoterpenes such as limonene and linalool are commonly used as fragrance agents in perfumes, antibacterial agents and essential oil (Zhuang, 2013). Sesquiterpenes such as farnesol mostly used in pharmaceutical as antibacterial and antifungal agent (Zhuang, 2013). Gibberellins are diterpenes which commercially used as feedstock for chemical applications in industries (Zhuang, 2013). Triterpenes include sterols, botryococcene, hopenoids and squalene used as biofuel, biologic markers and skin moisturizers in cosmetics (Zhuang, 2013). Tetraterpenes such as lycopene and betacarotene can be found in food additives and food coloring (Zhuang, 2013).

There are two pathways in which terpenes can be synthesized. The two pathways are mevalonic acid (MVA) and 2-e-methyl-d-erythritol-4-phosphate (MEP) pathways (Dewick, 2002). The biosynthesis of terpenes takes place from two C₅ precursors which are isopentyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) (Dewick, 2002).