
307

Appendix J: Improving
Your Program’s
Performance

This appendix provides a brief summary of some ways to help
improve the performance of your LogiQL programs.

DERIVED-ONLY PREDICATES
By default, predicates computed via rules are treated as materialized
views, so their fact populations are stored for use in later transactions.
This is typically better because it allows updates to be computed incre-
mentally (e.g., computing a bank account balance from the latest update
to the previous balance is much faster than calculating the balance each
time by processing all the updates on the account that have occurred since
the account was opened).

However, it is sometimes useful to fully re-evaluate a derived predicate,
making its result available for other rules within the current transaction,
but not installing its result in the database when the transaction is com-
mitted. Such derived-only predicates are declared using the metapredicate
setting lang:derivationType[̀]="Derived".

Derived-only predicates are useful for defining a complex computa-
tion, which could potentially result in an infinite set of facts, for reuse
elsewhere in the transaction in a context that finitely constrains its
arguments. Recall the following example discussed in Unit 4.5:

Mass(m), hasKgValue(m:kg) -> float(kg).
Energy(e), hasJouleValue(e:j) -> float(j).
cSquared[m] = e -> Mass(m), Energy(e).

308 ◾ Appendix J: Improving Your Program’s Performance

cSquared[m] = e <- m * pow[300000000f, 2f] = e.
lang:derivationType[`cSquared] = "Derived".
isHighEnergySource(m) -> Mass(m).
isHi ghEnergySource(m) <- Mass(m), cSquared[m] >

pow[10f, 18f].
isVeryHighEnergySource(m) -> Mass(m).
isVe ryHighEnergySource(m) <- Mass(m), cSquared[m] >

pow[10f, 19f].

The cSquared rule would normally be treated as unsafe, because there
are infinitely many values of m and e that satisfy it. However, because
cSquared is a derived-only predicate, its values are computed only
in the context of the other rules that use them, and those rule bod-
ies restrict m to the finite set of values asserted for the domain predi-
cate Mass(m). The following performance tip summarizes appropriate
usage.

PT1: Use the default setting (derived-and-stored) for computed predi-
cates whenever incremental computation is desired (the typical
situation). If you wish to reuse a computation with potentially infi-
nite results within other rules in the same transaction that finitely
constrain it, then declare the predicate derived-only.

Unguarded Delta Rules

Recall how in Exercise 5B of Chapter 3 grandparent facts were added
using an intentional database (IDB) rule. Here isGrandparentOf
is declared instead as an extensional database (EDB) predicate to allow
direct assertions about grandparenthood when we do not know at least
one of the parenthood facts whose combination would imply it. The delta
rules automatically add grandparent facts when relevant parenthood facts
are added:

Person(p), hasPersonName(p:pn) -> string(pn).
isParentOf(p1, p2) -> Person(p1), Person(p2).
isGrandparentOf(p1, p2) -> Person(p1), Person(p2).
+isG randparentOf(p1, p2) <- +isParentOf(p1, p3),

isParentOf(p3, p2).
+isG randparentOf(p1, p2) <- isParentOf(p1, p3),

+isParentOf(p3, p2).

Appendix J: Improving Your Program’s Performance ◾ 309

Executed delta rules are evaluated before the installed delta rules, so the
relevant parenthood facts are already there when the installed delta rules
are run. For the same reason, the single installed delta rule below expresses
the same result as the combination of rules above:

+isG randparentOf(p1, p2) <- isParentOf(p1, p3),
isParentOf(p3, p2). // Error!

This rule would derive all applicable grandparenthood facts on every
transaction, in contrast to the guarded delta rules in the first version
that derive the relevant grandparenthood facts only when a relevant
parenthood fact is added. However, this delta rule generates an error
message because its rule body does not include a delta or pulse predi-
cate that provides a condition, or guard, that must be satisfied before
the rule is executed. Such a delta rule is said to be unguarded. If they
were allowed, unguarded delta rules would be evaluated on every
transaction. Apart from the extra expense incurred by such redundant
computation, unguarded delta rules might lead to predicate locking
problems that can potentially disable programs that are intended to
be concurrent.

Problems can also occur if a delta rule to be executed at a stage other
than initial references a negated atom from an earlier stage.

PT2: Avoid unguarded delta rules (i.e., delta rules in which the rule body
contains no delta predicate or pulse predicate condition that is
required for the rule to be evaluated).

FOLDING DISJUNCTIONS
Consider the following program, which includes a derivation rule to select
a short list of applicants to be interviewed for a technical position:

Applicant(a), hasApplicantNr(a:n) -> int(n).
Language(la), hasLanguageName(la:n) -> string(n).
hasIndustryExperience(a) -> Applicant(a).
isFluentIn(a, la) -> Applicant(a), Language(la).
nrPublicationsOf[a] = n -> Applicant(a), int(n).
Discipline(d), hasDisciplineName(d:n) -> string(n).
hasPhDIn(a, d) -> Applicant(a), Discipline(d).
isShortListed(a) -> Applicant(a).

310 ◾ Appendix J: Improving Your Program’s Performance

isShortListed(a) <-
 hasIndustryExperience(a), isFluentIn(a, "English"),
 nrPublicationsOf[a] >= 20,
 (hasPhDIn(a, "Computer Science") ;
 hasPhDIn(a, "Logic")).

The derivation rule includes a conjunction of conditions to be satisfied
(industrial experience, fluency in English, and at least 20 publications),
as well as a disjunction of conditions to be satisfied (must have a Ph.D. in
either computer science or logic).

Although this program works, internally the LogiQL engine transforms
the derivation rule into the following, disjunction-free rules, in order to
execute it:

isShortListed(a) <-
 hasIndustryExperience(a), isFluentIn(a, "English"),
 nrPublicationsOf[a] >= 20,
 hasPhDIn(a, "Computer Science").

isShortListed(a) <-
 hasIndustryExperience(a), isFluentIn(a, "English"),
 nrPublicationsOf[a] >= 20,
 hasPhDIn(a, "Logic").

Each of the transformed rules includes the original conjunction of
three conditions, as well as one of the original disjuncts. Hence, the
conjunction in the original rule has to be processed twice, once for each
original disjunct. If the original conjunction is complex or the num-
ber of disjuncts is high, this kind of duplication of effort can signifi-
cantly impact performance. In such cases, it is better to specify one
rule to compute just the disjunction (known as “ folding the disjunc-
tion”), and then use that computed predicate instead of the disjunction
in a second rule. For the current example, this leads to the following
reformulation:

hasRelevantPhD(a) <-
 hasPhDIn(a, "Computer Science") ;
 hasPhDIn(a, "Logic").
isShortListed(a) <-
 hasIndustryExperience(a), isFluentIn(a, "English"),
 nrPublicationsOf[a] >= 20, hasRelevantPhD(a).

Appendix J: Improving Your Program’s Performance ◾ 311

With this approach, the conjunction is computed once only, leading to
better performance. For some more complicated disjunctions, folding
cannot be done (e.g., if a disjunct negates over a variable that is positively
bound only outside the disjunction). However, where it can be done,
 folding disjunctions often improves performance.

PT3: If the rule body includes a complex conjunction as well as a disjunc-
tion, consider folding the disjunction to a separate rule.

DISJOINT PREDICATE RULES
Unit 2.6 used the following example code to compute the number of chil-
dren that a Person has:

nrChildrenOf[p] = 0 <- Person(p), !isParentOf(p, _).
nrCh ildrenOf[p] = positiveNrChildrenOf[p] <-

isParentOf(p, _).
// The number of children of p = 0
// if p is a person who is not a parent of someone ,
// else it’s the positive number of children of p .

Notice that there are two rules for nrChildrenOf. Because nrChildren
Of is a functional predicate, there is a danger that the two rules will produce
different values for a given argument Person. To make sure this does not
happen, the execution engine must specifically check for violations. For these
two rules, however, we know that a given argument Person can only satisfy
one of the two rules. Hence, in principle, the check need never be made.

Fortunately, LogiQL has a way for you to let the execution engine know
that at most one of these possibilities could ever hold. To do this, you
should make use of the lang:isDisjoint metapredicate:

lang:isDisjoint[`nrChildrenOf] = true.
// The two rules for nrChildrenOf return mutually
// exclusive results.

Notice that the predicate nrChildrenOf serves as argument of the
metapredicate lang:isDisjoint. Although this metapredicate is not
needed to get the right result, it can improve performance by notifying
the compiler that the result sets returned individually by the two rules for
nrChildrenOf are mutually exclusive. Since each of the two individual

312 ◾ Appendix J: Improving Your Program’s Performance

result sets is known to be functional, disjointedness between them implies
that the overall result set is also functional. Hence, the LogiQL execution
engine does not need to perform a separate check to ensure that this func-
tional dependency is satisfied.

PT4: If multiple rule bodies defining the same functional predicate can
never be applied to the same argument, use the lang:isDisjoint
metapredicate to avoid making unnecessary functional dependency
violation checks.

