
303

Appendix I: Testing
Your Programs

This appendix describes the lb unit unit-testing framework. An
important part of constructing programs in any language is testing

them, and one purpose of this appendix is to get you thinking about con-
structing tests as you write your programs.

The lb unit is invoked by typing lb unit args, where args
is used to indicate the tests you want to run and other options you can
supply. Individual tests can be run by using the --test fileName(s)
option, where fileName(s) gives the name of the file(s) containing the
tests that you want to run.

You can also organize your tests into suites, collections of related tests.
Similar to the above, you would use the --suite suiteName(s) option
to run suite(s) of tests. Each of them names a directory containing a set
of test files to execute. You can even run a series of suites by using the
-- suiteDir suiteDirectory(ies) option. In this case, lb unit will recur-
sively execute the tests in each of the named directories.

Regardless of how you invoke lb unit, it first runs any user-specified
setup instructions common to the tests in the directory containing them.
The instructions are placed in a file named setUp.lb. Similarly, after the
tests are run, lb unit runs the instructions in the file tearDown.lb.
Note that all test script files should use the .lb suffix.
setUp.lb, tearDown.lb, and your test files comprise two types of

content: LogiQL code and instructions in the form accepted by the lb
command. (See Appendix A.) For example, here is the setup file as found
in the setUp.lb file in the resource directory for this appendix:

create --unique

304 ◾ Appendix I: Testing Your Programs

This instruction tells lb unit to create a new workspace with a made up
and unique name. Alternatively, instead of --unique, you can specify a
name for the workspace, such as ws.

Similarly, tearDown.lb contains the following line:

close --destroy

which closes and removes the workspace used in the tests.
Besides opening and closing workspaces, lb unit instructions can

load LogiQL code blocks and data. For example, say we wanted to make
sure that a simple declaration like the following had no problems. The fol-
lowing instruction could be used to do this:

ad dblock 'Monarch(m), hasMonarchName(m:s) ->
string(s).'

exec --file b.logic

addblock is the lb command for adding declarations, rules, and con-
straints to a workspace. The LogiQL code is contained within apostrophes
to prevent inadvertent interpretation by the shell from which you execute lb
unit. In this example, the addblock transaction adds the declarations of
Monarch and hasMonarchName to the workspace created with setUp.
lb. The second transaction above shows an alternative way to include infor-
mation in a test. The --file option to exec requests that lb unit obtain
information from a file b.logic, which contains the following content:

+Monarch("George VI").

Note the suffix .logic should be used for files containing only LogiQL
statements.

Of course, the above two transactions do not comprise a very interest-
ing test. If they were executed by lb unit, the compiler and runtime
would check for simple errors, such as syntax problems. While this can be
valuable information, normally, you will want to determine that the pro-
gram actually computes the intended output. One way to make this check
is to define a new predicate and populate it with the output expected. Then
the two predicates (the original one and the new one) can be compared.

The following test, based on chapter1/tests/CE1/q1c.lb, illus-
trates this technique. It assumes the same setUp.lb and tearDown.
lb files as shown above. The test’s main purpose is to check whether

Appendix I: Testing Your Programs ◾ 305

the computation expressed in the foreignMonarch predicate derives
the expected answers. Here is the first part of the test providing declara-
tions, constraints, derivation rules, and basic data:

addblock '
 Monarch(m), hasMonarchName(m:s) -> string(s).
 Country(c), hasCountryCode(c:cc) -> string(cc).
 wasBornIn[m] = c -> Monarch(m), Country(c).
 Monarch(m) -> wasBornIn[m] = _ .
 foreignMonarch(m) -> Monarch(m).
 foreignMonarch(m) <- wasBornIn[m] = c, c ! = "GB".
'

exec '
 +wasBornIn["Anne"] = "GB".
 +wasBornIn["George I"] = "DE".
 +wasBornIn["George II"] = "DE".
 +wasBornIn["George III"] = "GB".
 +wasBornIn["George IV"] = "GB".
 +wasBornIn["William IV"] = "GB".
 +wasBornIn["Victoria"] = "GB".
 +wasBornIn["Edward VII"] = "GB".
 +wasBornIn["George V"] = "GB".
 +wasBornIn["Edward VIII"] = "GB".
 +wasBornIn["George VI"] = "GB".
 +wasBornIn["Elizabeth II"] = "GB".
'

Based upon the above declarations and the derivation rule for foreign-
Monarch, you would expect the derived answers to be “George I”
and “George II”. In order to make this check, you can express these
expectations by introducing a new predicate, as shown in the following
code segments:

addblock 'foreignMonarch:expected(m) -> Monarch(m).'

The segment defines a new predicate named foreignMonarch:
expected. The name is conventionally constructed from the name of the
predicate being checked, foreignMonarch, and the suffix, expected,
separated by a colon (‘:’).

306 ◾ Appendix I: Testing Your Programs

You can now populate the new predicate with the facts you expect to be
contained in the foreignMonarch predicate: that is, that George I and
George II were not born in Great Britain:

exec '
 +foreignMonarch:expected("George II").
 +foreignMonarch:expected("George I").
'

If the code above is correct, you would expect the two predicates,
 foreignMonarch and foreignMonarch:expected, to be identi-
cal. The final segment of the test comprises two constraints that make this
check:

addblock '
 foreignMonarch:expected(m) -> foreignMonarch(m).
 foreignMonarch(m) -> foreignMonarch:expected(m).
'

The first constraint expresses the expectation that all of our predicted
answers were, in fact, derived. The second checks that no other outputs
were produced.

There is some flexibility into which transactions the various statements
are placed. For example, the declaration of foreignMonarch could have
been placed with the declarations for Monarch and hasMonarchName
in the first transaction above. Also, the first of the two constraints in the
last segment could have been placed there. Stylistically, however, we rec-
ommend that you place your testing code separate from and after the code
being tested. Note however, we could not have put the second constraint
with the declarations in the first transaction. Can you see why?

If you place the second constraint in any transaction before the
foreignMonarch:expected facts were asserted, the test would fail,
even if the underlying code was correct. This is because at the moment
when the transaction containing the constraints completed, there would,
in fact, be two foreignMonarch facts for which there were not yet
foreignMonarch:expected facts, violating the second constraint.
The code for this example can be found in the file example.lb.

Information about other lb unit options can be found by executing
lb unit --help.

