
289

Appendix H:
LogiQL and SQL

SQL is a standard language used for defining, manipulating, and
 querying relational databases. This appendix provides a brief discus-

sion of how basic queries conveyed in SQL may be expressed in LogiQL.
Consider the following relational database, which includes two rela-

tional tables (Tables H.1 and H.2) describing countries in 2011. The coun-
try table lists the ISO two-letter code, name, and population of various
countries. For discussion purposes, the population of Finland (5,396,292)
is omitted simply to illustrate SQL’s use of a null value to indicate that
a data value is missing (e.g., because it is unknown or inapplicable). To
save space, only a small number of countries are included. For those
countries that have presidents, the president table lists the name, coun-
try, gender, and birth year of those presidents. Australia, Canada, and the
United Kingdom have prime ministers instead of presidents, so they are
not included in the president table.

Throughout the database, countries are standardly identified by their
country codes. The entries in the first two columns of the tables are neces-
sarily unique, so each of these columns is a candidate key for its table. The
country table has countryCode as its primary key and countryName as an
alternate key.

The president table has presidentName as its primary key, and country-
Code as an alternate key. Note that the countryCode column appears in
both tables. In fact, the countryCode column in the president table serves
as a foreign key constraint ensuring that each country code in the presi-
dent table also appears in the country table. A foreign key is a column, or
list of columns, within a table, that is not the primary key, but the foreign
key entries must also occur in a candidate key of some table.

290 ◾ Appendix H: LogiQL and SQL

Each row entry of a relational table is an ordered n-tuple of values, or
tuple for short. Each tuple represents one or more atomic facts. For exam-
ple, the first row of the country table stores the fact that the country with
the code “AU” has the name “Australia,” and also stores the fact that the
country with the code AU has a population of 22,778,975. In contrast,
LogiQL uses a separate predicate to store each kind of atomic fact. This
enables the data to be stored without using nulls. For example, instead of
setting the population of Finland to be null, LogiQL simply does not store a
population fact for Finland. The schema for the sample relational database
described above may be set out in LogiQL as follows. For simplicity, years
and populations are modeled simply as numbers:

Country(c), hasCountryCode(c:cc) -> string(cc).
President(p), hasPresidentName(p:pn) -> string(pn).
Gender(g), hasGenderCode(g:gc) -> string(gc).
countryNameOf[c] = cn -> Country(c), string(cn).
populationOf[c] = n -> Country(c), int(n).
countryOf[p] = c -> President(p), Country(c).
genderOf[p] = g -> President(p), Gender(g).
birthyearOf[p] = y -> President(p), int](y).

TABLE H.2 Genders and Birth Years of Presidents

presidentName countryCode Gender birthYear
Christian Wulff DE M 1959
Tarja Halonen FI F 1943
Nicolas Sarkozy FR M 1955
Pratibha Patil IN F 1934
Barack Obama US M 1961

TABLE H.1 Country Codes and Populations

countryCode countryName Population
AU Australia 22,778,975
CA Canada 34,482,779
DE Germany 81,729,000
FI Finland
FR France 65,300,000
GB United Kingdom 62,300,000
IN India 1,210,193,422
US United States 312,702,000

Appendix H: LogiQL and SQL ◾ 291

coun tryTable(c, cn, ns) -> Country(c), string(cn),
string(ns).

isPairedWith(mp, fp) -> President(mp), President(fp).
isHighlyPopulated(c) -> Country(c).
hasGenderCode(_:gc) -> gc = "M" ; gc = "F".
Country(c) -> countryNameOf[c] = _.
Pres ident(p) -> countryOf[p] = _, genderOf[p] = _,

birthyearOf[p] = _.

If you ever wish to display LogiQL data in the form of a relational table,
you can use a rule or query to conjoin the relevant facts into a single tuple.
If the relational tuple includes a null, you can check for instances where the
relevant fact does not exist and then display an empty string to represent
the null. If the data type for a nullable column is not string, you can use
a conversion function to coerce the data type to be string. For example,
the following rule may be used to derive a predicate which displays like the
relational country table:

coun tryTable(c, cn, ns) -> Country(c), string(cn),
string(ns).

countryTable(c, cn, ns) <- countryNameOf[c] = cn,
 ((populationOf[c] = n, ns = int:string:convert[n]);
 (!populationOf[c] = _, ns = "")).
// Show the country code, country name, and a
// population string for each country. If the country
// population is recorded,display it,otherwise
// display an empty string for the population

The above program, together with the data, a derivation rule and query to
display the relational tables, and some later queries, are accessible in the
files SQL1.logic and SQL1Data.logic.

SQL is based partly on two formal notations called the relational
algebra and the relational calculus. To construct SQL queries, you make
use of several operations that have their historical roots in these nota-
tions. Relational selection is the operation of selecting those rows from a
relation (which may be either asserted, or derived from other relations)
that satisfy a specified condition. In SQL, this is achieved by including
the condition in a where-clause. Relational projection is the operation
of choosing just those columns of interest from a relation. In SQL, this
is achieved by including the source relation(s) in a from-clause and the

292 ◾ Appendix H: LogiQL and SQL

relevant columns in a select-list. For example, a query to list the names
and birth years of the female presidents may be formulated in SQL:

select presidentName, birthyear
from President
where gender = 'F'

When run, this query returns the result displayed in Table H.3.
Relational algebra and LogiQL are both set-oriented languages. What

this means is that a given tuple can appear at most once in a table. SQL,
on the other hand, is bag oriented. This means that duplicate tuples are
allowed. For example, the result of the following query to list the genders
of presidents includes multiple occurrences of each gender code:

select gender
from President

The result of executing the query is shown in Table H.4.
SQL includes a distinct option to convert bags to sets, so the following

query returns only a single occurrence of each gender. The same result is
obtained from the LogiQL query: _(g) <- genderOf[_]=g.

select distinct gender
from President

TABLE H.4 Genders (Only)
of Presidents in SQL

Gender
M
F
M
F
M

TABLE H.3 Names and Birth
Years of Female Presidents

presidentName birthYear
Tarja Halonen 1943
Pranab Mukherje 1935

Appendix H: LogiQL and SQL ◾ 293

The result of executing the query is shown in Table H.5.
SQL includes various relational operators for joining multiple relations

into a single relation. The most expansive of these is the cross join opera-
tor, which outputs the Cartesian product of the input relations. Given any
two sets A and B, the Cartesian product A × B is the set of all ordered pairs
(x, y) where x belongs to A and y belongs to B. If A and B are relations,
x and y are tuples.

For example, the following query lists all the possible ways of pairing a
male president with a female president. Here as-clauses are used to intro-
duce aliases for the president table (MP, male president; FP, female presi-
dent). The aliases enable the table to be cross joined to itself (pairing each
president with each president) before the where-clause condition filters
out the unwanted rows from the Cartesian product. The aliases are neces-
sary to distinguish the two occurrences of the president table in forming
the join:

select MP.presidentName, FP.presidentName
from President as MP
 cross join President as FP
where MP.gender = 'M'
 and FP.gender = 'F'

The result of executing the query is shown in Table H.6.

TABLE H.5 Genders (Only)
of Presidents in LogiQL

Gender
M
F

TABLE H.6 Male–Female Presidential Pairings

MP.presidentName FP.presidentName
Christian Wulff Tarja Halonen
Christian Wulff Pratibha Patil
Nicolas Sarkozy Tarja Halonen
Nicolas Sarkozy Pratibha Patil
Barack Obama Tarja Halonen
Barack Obama Pratibha Patil

294 ◾ Appendix H: LogiQL and SQL

The following LogiQL rule computes the same set of ordered pairs:

isPairedWith(mp, fp) -> President(mp), President(fp).
isPa iredWith(mp, fp) <- genderOf[mp] = "M",

genderOf[fp] = "F".
// Pair each male president with each female president.

If we remove the where-clause from the previous SQL query, the full
Cartesian product would be listed, pairing each of the five presidents
with each president, resulting in 25 rows. The equivalent computation
in LogiQL is shown below. Notice how much simpler the LogiQL code is
compared with the SQL code:

isPairedWith(p1, p2) -> President(p1), President(p2).
isPairedWith(p1, p2) <- President(p1), President(p2).
// Pair each president with each president.

Now suppose that we wish to list each president as well as the ISO code
and name of the country of which he/she is president. If you look back at
the relational tables, you’ll see that the relevant country codes are listed in
both tables, but the presidents are listed in only the president table, while
the country names are listed only in the country table.

The query may be formulated by forming the natural join of the two
tables (matching rows in the country table with rows in the president table
that have the same value for country code) and then projecting on the
three required columns from the join result. In the SQL standard, this
query may be formulated as shown below, using the natural join operator:

select presidentName, countryCode, countryName
from President natural join Country

Although included in the SQL standard since 1992, many commercial
SQL dialects do not yet support this syntax. In this case, the query may be
reformulated as a conditional inner join as follows. Here the join condition
is stated in an on-clause, and the countryCode columns must be qualified
by prepending their table name:

se lect presidentName, President.countryCode,
 countryName

from President join Country
on President.countryCode = Country.countryCode

Appendix H: LogiQL and SQL ◾ 295

The result of executing the query is shown in Table H.7.
The same results may be formulated in LogiQL:

resu lt(p, c, cn) -> President(p), Country(c),
string(cn).

resu lt(p, c, cn) <- countryOf[p] = c,
countryNameOf[c] = cn.

Notice that the join is achieved simply by using the same variable c in
each conjunct. This ensures that the c value in countryNameOf[c]=cn
matches the c value in countryOf[p]=c for each (p,c,cn) triple that
satisfies the body condition.

A ∪ B, the union of sets A and B, is the set of all elements that belong to
either A or B. SQL includes the union operator to form the union of two
compatible relations. As an example, consider the following two m:n rela-
tions, shown in Tables H.8 and H.9. Notice that their populations are prop-
erly compatible. A corresponding LogiQL schema is set out below the tables:

Person(p), hasPersonName(p:pn) -> string(pn).
Food(f), hasFoodName(f:fn) -> string(fn).
eats(p, f) -> Person(p), Food(f).
likes(p, f) -> Person(p), Food(f).

TABLE H.8 Eats Relation

personName foodName
Spencer Pizza
Spencer Spinach
Spencer Raisins
Terry Mangoes
Terry Pizza
Terry Vegemite

TABLE H.7 President Names, Country Codes,
and Country Names

presidentName countryCode countryName
Christian Wulff DE Germany
Tarja Halonen FI Finland
Nicolas Sarkozy FR France
Pratibha Patil IN India
Barack Obama US United States

296 ◾ Appendix H: LogiQL and SQL

Since the types of the Eats and Likes relations are compatible, it is mean-
ingful to construct their union. The following SQL query may be used to
list who eats or likes what foods:

select personName, foodName
from Eats
union
select personName, foodName
from Likes

The result of executing the query is shown in Table H.10.
The following, disjunctive LogiQL query returns the same set of

ordered pairs. In general, unions may be formulated in LogiQL by using
the inclusive-or operator (‘;’). Again, the LogiQL query is simpler than the
corresponding SQL query. The program, data, and query are accessible in
the files SQL2.logic and SQLData.logic:

_(p, f) <- eats(p, f) ; likes(p, f).

Returning to our country and president tables, suppose we want to list the
presidents of those countries that have a population of at least 100 million
people. Although we need to access both tables to determine the answer,
the final projection comes from just the president table. Hence, even
though we could formulate the query using a join, it is also possible to
formulate the query in SQL without a join by using a subquery:

select presidentName
from President
where countryCode in
(select countryName
 from Country
 where population > = 100000000)

TABLE H.9 Likes Relation

personName foodName
Spencer Pizza
Spencer Raisins
Terry Chocolate
Terry Mangoes
Terry Pizza

Appendix H: LogiQL and SQL ◾ 297

The result of executing the query is shown in Table H.11.
Here the bracketed select-statement is a subquery to derive which

countries have a population above 100 million. This subquery returns the
set {‘IN’, ‘US’}, and this intermediate result is used to transform the outer
query into select presidentName from president where countryCode in
{‘IN’, ‘US’}, which is then run to return the final result.

In LogiQL the subquery to compute the highly populated countries
may be specified as a derivation rule such as

isHighlyPopulated(c) -> Country(c).
isHighlyPopulated(c) <- populationOf[c] > = 100000000.

That computed predicate may then be referenced in the final query to
return the presidents of highly populated countries. This code is included
in the file SQL1.logic:

_(p) <- countryOf[p] = c, isHighlyPopulated(c).

SQL provides several aggregation functions, including count, sum, min, and
max which roughly correspond, respectively, to the count, total, min,
and max functions in LogiQL. SQL’s avg function for computing averages
may be emulated in LogiQL by dividing the sum computed by the total
function by the number of elements computed by the count function.

TABLE H.11 Presidents of
Highly Populated Countries

presidentName
Pratibha Patil
Barack Obama

TABLE H.10 Union of
Eats and Likes Relations

personName foodName
Spencer Pizza
Spencer Spinach
Spencer Raisins
Terry Chocolate
Terry Mangoes
Terry Pizza
Terry Vegemite

298 ◾ Appendix H: LogiQL and SQL

SQL’s count function may be applied to a single column, but when its
 argument is specified as an asterisk it counts all the rows in the specified
bag or set. For example, the following SQL query may be used to count the
number of female presidents:

select count(*) from President
where gender = 'F'

Result: 2
In LogiQL, we could derive this result using the following derivation rule:

nrFemalePresidents[] = n -> int(n).
nrFemalePresidents[] = n <-
 agg<<n = count()>> President(p), genderOf[p] = "F".

SQL’s syntax for aggregation functions is usually simpler than that of
LogiQL. The following SQL query may be used to list the name of the
country (or countries) with the maximum population. Since China was
omitted from our data, the query returns India:

select countryName from Country
where population =
 (select max(population) from Country)

Result: India
In LogiQL, the maximum population may be derived as follows:

maxPopulation[] = n -> int(n).
maxP opulation[] = n <- agg<<n = max(pop)>>

 populationOf[_] = pop.

The name of the country with the maximum population may now be listed
using the following query:

_(cn) <- countryNameOf[c] = cn, populationOf[c] =
maxPopulation[].

SQL includes a group by clause for partitioning a table into groups of rows,
where each row in a specific group has the same value(s) for the specified
grouping criterion/criteria. This may then be used to list properties that

Appendix H: LogiQL and SQL ◾ 299

apply to each group as a whole, so the final query result has at most one
row for each group. For example, the following SQL query lists the num-
ber of presidents for each gender, as well as the minimum birth year for
each gender:

select gender, count(*), min(birthyear)
from President
group by gender

Result:

F 2 1934
M 3 1955

When executed, the from-clause chooses the president table, and then the
group by clause partitions the president table into two groups, one for
each gender, as depicted below. The select-clause is then executed to list
for each gender the count of all the rows in its group and the minimum
birth year in its group.

The result of executing the query is shown in Table H.12.
In LogiQL, the grouping criterion is used as an argument to the derived

functions, and thus,

nrOfPresidentsOf[g] = n -> Gender(g), int(n).
nr OfPresidentsOf[g] = n <- agg<<n = count()>>
genderOf[_] = g .

// Computes the number of presidents for each gender.
minBirthYearOf[g] = n -> Gender(g), int(n).
minBirthYearOf[g] = n <-
 agg<<n = min(y)>> genderOf[p] = g ,

birthyearOf[p] = y.
// Computes the minimum birth year for each gender.

TABLE H.12 Illustration of Group by Clause

presidentName countryCode Gender birthYear
Tarja Halonen
Pratibha Patil

FI
IN

F
F

1943
1934

Christian Wulff
Nicolas Sarkozy
Barack Obama

DE
FR
US

M
M
M

1959
1955
1961

300 ◾ Appendix H: LogiQL and SQL

The following query may now be used to return the required result:

_(g, np, mby) <-
 nrOfPresidentsOf[g] = np,
 minBirthYearOf[g] = mby.

The program, data, and query codes for the above grouping examples are
accessible as SQL3.logic and SQL3Data.logic.

Now consider Table H.13. This table records, for each item, region, and
quarter, the number of items sold in that region during that quarter. To save
space, we include just two items and two regions, and limit the quarters to
a single year. The key of this table is itemCode, region, and quarter. To help
with later discussion, the table is displayed as partitioned into four groups,
where all rows in any specific group share the same item and region.

The LogiQL schema for this table may be set out as follows;

Item(i), hasItemCode(i:c) -> string(c).
Region(r), hasRegionName(r:rn) -> string(rn).
Quarter(q), hasQuarterNr(q:qn) -> int(qn).
nrSo ldOf_In_In_[i, r, q] = n -> Item(i), Region(r),

Quarter(q), int(n).
hasRegionName(_:rn) -> rn = "East" ; rn = "West".
hasQuarterNr(_:qn) -> qn > = 1, qn <= 4.

TABLE H.13 Product Sales Report

itemCode Region Quarter Number Sold
BBB
BBB
BBB
BBB

East
East
East
East

1
2
3
4

50
100
100
150

BBB
BBB
BBB
BBB

West
West
West
West

1
2
3
4

100
150
200
250

DL
DL
DL
DL

East
East
East
East

1
2
3
4

20
30
40
50

DL
DL
DL
DL

West
West
West
West

1
2
3
4

50
100
100
150

Appendix H: LogiQL and SQL ◾ 301

Now suppose we wish to list for each item and region the total number of
items sold over all quarters. The query groups by multiple criteria, in this
case item and region. The SQL query may be formulated as follows, yield-
ing the result shown:

select itemCode, region sum(nrSold)
from Sale
group by itemCode, region

Result:

BBB East 400
BBB West 700
DL East 140
DL West 400

In LogiQL, sums are computed by the total function. To sum over the
quarters for each item–region combination, we include the two grouping
criteria as the arguments of the required function, which may be com-
puted using the following derivation rule:

tota lNrSoldOf_In_[i, r] = n -> string(i), string(r),
int(n).

totalNrSoldOf_In_[i, r] = n <-
 ag g<<n = total(qty)>>
 nrSoldOf_In_In_[i, r, _] = qty.
// Computes for each item and region combination
// the total number of items sold.

Querying the totalNrSoldOf_In_ predicate now gives the same
result set as output by the SQL query. The program, data, and query
code for the above grouping example are accessible as SQL4.logic
and SQL4Data.logic.

