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Appendix G: LogiQL 
and Predicate Logic

LogiQL is a programming language capable of computing correct 
answers for properly formulated problems. It has evolved from efforts to 

apply formal logical reasoning to databases, and this appendix describes the 
relationship between logic and LogiQL. In particular, the appendix describes 
how LogiQL is related to propositional logic and first-order predicate logic.

Propositions are asserted by declarative sentences and are always true or 
false but not both. In propositional logic, atomic propositions are denoted 
by propositional constants (e.g., R = “It is raining”; S = “It is snowing”). 
Compound propositions are formed by applying propositional operators 
to other propositions, using parentheses if needed. For example, using ∼ 
for the negation operator and ∧ for the conjunction operator, we could use 
the formula ∼(R∧S) to denote the proposition that “It is not both raining 
and snowing.” Results about propositional patterns are indicated by using 
propositional variables (e.g., p, q) to stand for any propositions in general. 
For example, ∼∼p is equivalent to p regardless of which proposition is sub-
stituted for p.

First-order logic (FOL), also called first-order predicate logic, predicate 
calculus, or quantification theory, extends propositional logic with predicates, 
quantifiers, and individual constants. In logic, an individual is any individual 
object (entity or value). For a given universe of discourse, specific individuals 
are denoted by individual constants (e.g., terry), and specific predicates 
are denoted by predicate constants with their arguments in parentheses, for 
example, isTallerThan(terry,norma). General results may be stated 
using individual variables (to range over any individual) and quantifiers. 
The universal quantifier ∀ means “for each” or “for all.” For example, the 
formula ∀x(∼isTallerThan(x,x)) means “for each individual x, it is not 
the case that x is taller than x” (i.e., nothing is taller than itself). The existential 
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quantifier ∃ means “there exists at least one” or “there is some.” For example, 
the following formula may be used to state that “some person is taller than 
Norma”: ∃x(Person(x)∧isTallerThan(x,norma)).

Table G.1 lists basic correspondences between operator symbols in 
predicate logic and LogiQL.

Both LogiQL and logic use parentheses ‘()’ to group items together, 
either to list the arguments of a predicate, for example, likes(x,y), or to 
ensure that a compound expression inside parentheses is evaluated before 
operating on it from outside. Negation has the highest priority, so it has 
minimum scope. Hence the following expressions, first in logic and then 
in LogiQL, mean “p is not tall and p is not male”:

∼isTall(p) ∧ ∼isMale(p)

!isTall(p), !isMale(p)

The following expressions use parentheses to conjoin the atoms before 
negation is applied, and hence mean “it is not the case that p is both tall 
and male”:

∼(isTall(p) ∧ isMale(p))

!(isTall(p), isMale(p))

Logic notations typically also allow square brackets ‘[]’ as delimiters of 
expressions to be evaluated before connecting them to outside expres-
sions. For example, the first formula above is equivalent to ∼[isTall(p)∧ 
isMale(p)]. However, LogiQL uses square brackets to delimit the argu-
ments of a function term (e.g., fatherOf[p1]=p2).

TABLE G.1  Operator Symbols

Logic Symbol LogiQL Symbol Operation Name English Reading

∼ ! Negation Not; it is not the case that
∧ , Conjunction And
∨ ; Inclusive disjunction Or (inclusive-or)
→ -> Implication Implies; if … then … ; only if
← <- Converse implication If
∀ Universal quantifier For all; for each; for every
∃ Existential quantifier There exists; there is some
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The logic formulas in this appendix do not assume any precedence 
among the binary operators. In LogiQL, however, the and operator has 
priority over the or operator, which itself has priority over the implication 
operators. Hence, each of the following formulas may be read as “p either 
is male and tall, or is female and short”:

[isMale(p) ∧ isTall(p)] ∨ [isFemale(p) ∧ isShort(p)]

isMale(p), isTall(p) ; isFemale(p), isShort(p)

The semantics of the five propositional operators shown above are 
provided by the following truth tables, where p and q denote proposi-
tions, and 1 and 0 denote the truth values True and False, respectively. 
First, the negation operator reverses the truth value of its argument, so 
negating a true proposition results in a false proposition, and negating a 
false proposition results in a true proposition. This is shown in Table G.2.

A conjunction is true if and only if all of its conjuncts are true. An inclu-
sive disjunction is true if and only if at least one of its disjuncts is true. 
A  material implication p→q is true unless its antecedent p is true and 
its consequent q is false. Hence, p→q evaluates to true if p is false, and 
the same is true of q←p (Table G.3). Later we discuss some differences 
between the implication operators of logic and the arrow operators of 
LogiQL.

Over a finite domain, universal quantification is equivalent to the con-
junction of its instantiations, and existential quantification is equivalent 

TABLE G.2  Truth Table 
for Negation Operator

p ∼p
1 0
0 1

TABLE G.3  Truth Table for Binary 
Logical Operators

p q p ∧ q p ∨ q p → q p ← q
1 1 1 1 1 1
1 0 0 1 0 1
0 1 0 1 1 0
0 0 0 0 1 1
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to the disjunction of its instantiations. For example, if the domain of 
individuals is {a,b,c} and Φ(x) is a FOL formula referring to x, then 
∀xΦ(x) is equivalent to Φ(a) ∧ Φ(b) ∧ Φ(c), and ∃xΦ(x) is equivalent 
to Φ(a) ∨ Φ(b) ∨ Φ(c).

In first-order logic, predicates and quantifiers range over individuals 
only. In logic, a specific individual may be denoted by an individual literal 
(e.g., 2) or by a function term (e.g., sqrt(4)). In LogiQL, function terms 
are indicated with square brackets (e.g., squareRootOf[4]). In  logic, 
individual variables are usually denoted by letters at the end of the alphabet, 
possibly subscripted (e.g., x,y,z,x1,x2). In LogiQL, individual variables 
typically start with one or more letters, and may include certain other char-
acters such as digits, underscores, and colons (e.g., p, c, person1, car2).

In a classical Datalog rule, head variables are understood to be univer-
sally quantified, and variables that occur only in the body are assumed 
to be existentially quantified. For example, the following predicate logic 
formula for grandparenthood is equivalent to the LogiQL rule below it. 
Note that our logic notation allows a quantifier to be followed by a list of 
individual variables; hence, ∀x,y is shorthand for ∀x∀y.

∀x,y�[isGrandparentOf(x, y) ← ∃z(isParentOf(x, z) ∧ 
isParentOf(z, y))]

i�Gra�ndparentOf(x, y) <- isParentOf(x, z), 
isParentOf(z, y).

In LogiQL, the anonymous variable (‘ _ ’) is used as shorthand for an 
existentially quantified variable that is not used elsewhere in the rule. 
For example, the following predicate logic formula and LogiQL rule each 
mean that “p is a driver if p drives something”:

∀p[Driver(p) ← ∃x(drives(p, x))]

Driver(p) <- drives(p, _).

In LogiQL, all predicates are typed, so the types of their arguments are 
known. For example, each of the following declarations restricts the 
speaks predicate to range over (person, language) pairs:

∀x,y[speaks(x, y) → Person(x) ∧ Language(y)]

speaks(p, lang) -> Person(p), Language(lang).
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In LogiQL, if a variable that occurs only in the body of a rule lies in the 
scope of a negation operator, its implicit existential quantifier is assumed 
to be placed after the negation operator. This is the case for both named 
and anonymous variables. Hence, it might appear that the two following 
formulas are equivalent, each meaning “p is illiterate in Asian languages if 
p is a person who does not speak something that is Asian”:

∀p[AsianLanguageIlliterate(p) ←
	 (Person(p) ∧ ∼∃l(speaks(p, l) ∧ isAsian(l)))]

As�ianLanguageIlliterate(p) <- Person(p), 
!(speaks(p, l), isAsian(l)).

Unfortunately, LogiQL does not support negations in this form. Instead, 
the same formula can be expressed using two rules as follows:

∀p[AsianLanguageIlliterate(p) ←
	 (Person(p) ∧ ∼∃l(speaks(p, l) ∧ isAsian(l)))]

AsianLanguageLiterate(p) <- speaks(p, l), isAsian(l).
Asia�nLanguageIlliterate(p) <- Person(p), 

!AsianLanguageLiterate(p).

In the above logic formula, the quantification ∀p has scope over the rest 
of the formula, and the quantification ∃l has scope over the conjunction 
after it. Each occurrence of the variable p is bound to the universal quan-
tifier, and each occurrence of the variable l is bound to the existential 
quantifier. Binding multiple occurrences of the same variable to the same 
quantifier ensures that when the formula is instantiated, each of those 
occurrences of the variable is replaced by the same instance.

As an example with a negated, anonymous variable, the following formu-
las each mean that “a non-driver is a person who does not drive anything”:

∀p[NonDriver(p) ← (Person(p) ∧ ∼∃x(drives(p, x))]

NonDriver(p) <- Person(p), !drives(p, _).

The following formulas each mean that “p is strictly fasting if p is a person 
who does not drink anything and does not eat anything.” The first existential 
quantification ∃x has scope over just eats(p,x). Both occurrences of the x 
variable in ∃x(eats(p,x)) are bound to the first ∃ quantifier. The second 
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existential quantification ∃x has  scope over just drinks(p,x). Both 
occurrences of the x variable in ∃x(drinks(p,x)) are bound to the sec-
ond ∃ quantifier. The five occurrences of p in the whole formula are bound 
to the same universal quantifier. Hence, when the formula is instantiated, 
each p must be replaced by the same item, but the item replacing the x in 
eats(p,x)  may differ from the item replacing the x in drinks(p,x). 
Similarly, the two anonymous variables in the LogiQL formula are not 
required to denote the same individual thing:

∀p[isStrictlyFastingy(p) ←
	 (Person(p) ∧ ∼∃x(eats(p, x)) ∧ ∼∃x(drinks(p, x)))]

isSt�rictlyFasting(p) <- Person(p), !eats(p, _), 
!drinks(p, _).

In the context of just the NonDriver rule body (Person(p) ∧ ∼∃x 
(drives(p,x))), only the variable x is bound. Within that body, the 
variable p is said to be free or unbound, even though in the context of the 
whole rule it is bound to the universal quantifier.

Recall the following safety condition discussed in Unit 3.2.

SC2: �Each named variable appearing in the scope of a negation within 
the body of a rule must also appear in a positive context in that 
rule body.

Another way of thinking about this safety condition is that variables that 
are free in the body of the rule must occur in a positive context as the 
argument of a domain predicate or a domain equality. In the LogiQL for-
mulation of the AsianLanguageIlliterate and NonDriver rules 
given above, the body variables x and _ occur in a negative context but 
do not violate SC2 because they are not free in the body. (They are bound 
to the implicit existential quantifier.) Understanding this may help make 
sense of error messages from the LogiQL compiler concerning unbound 
variables in unsafe rules.

In LogiQL, many entity types are declared using a refmode for their 
reference scheme. For example, the following declaration indicates that 
Country is an entity type whose instances are referenced by country 
codes, which are represented by character strings:

Country(c), hasCountryCode(c:cc) -> string(cc).
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This declaration is equivalent to the following set of logical formulas. 
The last three formulas capture the injective (mandatory, 1:1) nature of the 
refmode predicate:

∀x[Country(x) → Entity(x)]
∀x,y[hasCountryCode(x, y) → (Country(x) ∧ string(y))]
∀x[Country(x) → y(hasCountryCode(x, y))]
∀x,y1�,y2[(hasCountryCode(x, y1) ∧ 

hasCountryCode(x, y2)) → y1 = y2]
∀x,x1�,y2[(hasCountryCode(x1, y) ∧ 

hasCountryCode(x2, y)) → x1 = x2]

In LogiQL, facts are asserted using delta rules with a ‘+’ modifier. For exam-
ple, given the refmode declaration above for Country, the following code 
may be used to assert that there is a country that has the country code “AU”:

+Country("AU").

This is actually just convenient shorthand for the following longer asser-
tion, whose expansion can be inferred from the refmode declaration:

+Country(c), +hasCountryCode(c:"AU").

This is equivalent to the following assertion in logic:

∃x[Country(x) ∧ hasCountryCode(x, "AU")]

Internally, LogiQL identifies entities by the combination of an auto-
generated number (e.g., 0, 1, 2, etc.) and their type (e.g., Country, 
Person). However, refmodes provide a far more convenient way for 
humans to identify entities in natural communication.

LogiQL allows entities with refmodes to be referenced simply by their 
reference values in other contexts as well, since the compiler can always 
use the refmode declaration to infer the relevant expansion. For example, 
given the following declaration

countryNameOf[c] = cn -> Country(c), string(cn).

the following code can be used to add the country name of Australia:

+countryNameOf["AU"] = "Australia".
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This is equivalent to the following assertion in logic:

∃x[�hasCountryCode(x, "AU") ∧ 
hasCountryName(x, "Australia")]

Given the refmode declaration above, the assertion “+Country("AU")” 
is now implied, so there is now no need to explicitly assert it.

In logic, a sentence is a well-formed formula with no free variables, and 
every sentence expresses a proposition, and hence is either true or false. 
A collection of items is said to be monotonically increasing if over time it 
either remains constant or has new items added. A system built on classical 
logic is monotonic (more precisely, monotonic increasing) because you can 
add more sentences to it, but you can’t retract any sentence. In contrast, 
LogiQL supports retraction by use of delta predicates with the retraction 
modifier (‘-’). Consider, for example, the following delta rule:

-Country("AP").

Rather than simply expressing the proposition that there is no country with 
the country code “AP,” this is a command to retract the fact (if any) that there 
is a country with the country code “AP” (if no such fact is present, no action 
is taken). Hence, if the previous state of the extensional database (EDB) 
included the fact Country("AP"), execution of the above delta rule would 
remove this fact from the EDB. Hence, use of retraction rules makes LogiQL 
non-monotonic (i.e., facts may be removed from its EDB). The capability of 
retraction is often needed in practical information systems, either to remove 
a fact that is no longer true or of interest, or to correct a mistaken entry.

Although delta rules to simply insert an atom could be viewed as merely 
asserting propositions, all other delta rules must be viewed as action rules, 
and if they include the left-arrow operator they are either event–action 
rules, condition-action rules, or event-condition-action rules.

In logic, the formula p(x)→q(x) is equivalent to the formula q(x)←p(x). 
However, in LogiQL, p(x)->q(x) is not equivalent to q(x)<-p(x). This is 
because in LogiQL, right-arrow rules are treated as constraints on the EDB, 
while left-arrow rules are treated as derivation rules for inferring new facts. 
Consider, for example, the following program and data, which are accessible 
along with sample queries in the files Pass.logic and PassData.logic:

// Schema
Person(p), hasPersonName(p:pn) -> string(pn).
Gender(g), hasGenderCode(g:gc) -> string(gc).
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genderOf[p] = g -> Person(p), Gender(g).
hasGenderCode(_:gc) -> gc = "M" ; gc = "F".
Person(p) -> genderOf[p] = _.
isIndustrious(p) -> Person(p).
isIntelligent(p) -> Person(p).
passes(p) -> Person(p).
fails(p) -> Person(p).
passes(p) <- isIndustrious(p) ; isIntelligent(p).
fails(p) <- Person(p), !passes(p).

// Data
+genderOf["Adam"] = "M", +isIndustrious("Adam"),
+genderOf["Eve"] = "F", +isIntelligent("Eve").
+genderOf["Bob"] = "M".

Since persons and genders have refmodes, facts about them may be entered 
in the abbreviated form shown, using just their refmode values to identify 
them. For example, genderOf["Adam"]="M" expands internally to the 
equivalent of the following logic:

∃x,y[genderOf(x) = y ∧ hasPersonName(x, "Adam") ∧
	 hasGenderCode(y, "M")]

The value constraint on hasGenderCode of the program ensures that 
its second argument is populated only with the values “M” and “F”. Any 
update attempt to use a different gender code will be rejected by the sys-
tem. Similarly, the constraint on Person ensures that any attempt to add 
persons without their gender will be rejected.

In contrast, the derivation rules at the end of the program are used to 
draw inferences. If a person is asserted to be either industrious or intel-
ligent, then the system infers that he/she passes. For the data shown, 
querying the passes predicate returns “Adam” and “Eve”. The second 
derivation rule is used to infer that a person fails if he/she is not known 
(either by assertion or inference) to pass. For the data shown, querying the 
fails predicate returns Bob.

Classical logic adopts the open-world assumption, allowing that some 
facts may simply be unknown. So the absence of a fact does not imply that 
it is false. However, in logic, you can directly assert that some proposition 
is false simply by negating it. For example, in logic you could assert that 
there is no country with the ISO two-letter country code “AP” as follows:

~∃x(hasCountryCode(x, "AP"))
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LogiQL derivation rules with a negation in their body apply the 
closed-world assumption. This approach assumes all relevant facts are 
known, so the failure to find the fact that Bob passes (either by inspecting 
the EDB or by inferring new facts from the derivation rules) is interpreted 
to mean that Bob does not pass. This negation as failure semantics differs 
from classical  logic, where the open-world assumption entails that it is 
unknown whether Bob passes, and consequently, it cannot be inferred 
that Bob fails.

Thus, LogiQL’s inferencing capabilities allow some conclusions to be 
drawn that do not follow from classical logic. But first-order logic allows 
many kinds of inferences to be made that are not possible in LogiQL. For 
example, in propositional logic, the argument of the form p→r, q→s, p∨q, 
and therefore, r∨s can be trivially shown to be valid using a truth table. 
However, LogiQL does not allow disjunctions in fact assertions or in the 
heads of LogiQL rules, so it cannot support disjunctive inferences.

LogiQL also forbids negations in the head of derivation rules and has 
other restrictions such as the safety conditions considered in Chapter 3. 
Although these restrictions limit the power of LogiQL, they guarantee 
that legal programs in LogiQL will always execute in a finite time. In con-
trast, first-order logic is undecidable, meaning that there are some forms 
of argument that cannot be evaluated in a finite time.

As discussed in Chapter 4, LogiQL extends classical Datalog by allow-
ing head existentials. Recall the following example, where presidentOf 
is used as a constructor to derive the existence of a country’s president 
from the existence of the country:

President(p) ->.
presidentOf[c] = p -> Country(c), President(p).
lang:constructor(`presidentOf).
President(p), presidentOf[c] = p <- Country(c).

The final line of code is equivalent to the following logic formulation:

∀x[∃y(President(y) ∧ presidentOf(x) = y) ← Country(x)]

The existential quantifier in the rule head is implicit in the LogiQL formu-
lation. The rule may be verbalized as “For each country, there is a president 
who is the president of that country.”


