
271

Appendix F: 
Programming 
Conventions

The LogiQL language and compiler give a great deal of latitude 
to programmers to express their ideas. In particular, the choice of 

names, capitalization, and use of whitespace and comments are rela-
tively unconstrained. Nevertheless, there are some advantages to using 
uniform conventions: Programs become more readable, errors are more 
easily detected, and training is facilitated. This appendix describes the 
set of conventions used in this book. First, a descriptive overview is 
given, and then summary lists are provided. A short exercise completes 
the appendix.

OVERVIEW
In this book, we adopted the convention of starting the names of user-
defined object types with a capital letter, using a noun phrase to name 
the type. Typically, these types have been entity types represented by 
entity predicates (e.g., Monarch, MalePerson), but we may also 
use a predicate for a domain-related value type (e.g., PersonTitle). 
In  contrast, we started property predicate names with a lowercase 
letter, using a verb phrase. In both situations, we rendered the remain-
der of the name in camelCase (e.g., hasGivenName), where words 
after the first are appended, beginning with a capital letter. Remember 
that LogiQL is case sensitive, so you need to ensure that you use the 
appropriate case when referencing a predicate. Built-in predicates for 
types and functions (e.g., string, count) always start with a lower-
case letter.



272    ◾    Appendix F: Programming Conventions

There are some syntactic rules that must be obeyed. For example, a 
colon (‘:’) must be used to separate the arguments of a refmode predi-
cate, such as hasGenderCode(g:gc). When declaring functional 
predicates other than refmode predicates, we must enclose the keyspace 
arguments in square brackets (e.g., fatherOf[p1]=p2). Predicates that 
are not functional have their arguments in parentheses, for example, 
isParentOf(p1,p2).

If a functional predicate is binary, we have often used a functionOf 
style of naming to render a natural reading. For example, the equation 
genderOf[m]=g (i.e., “the gender of Monarch m is g”) reads more 
naturally than hasGender[m] = g. In some cases, a preposition other 
than “Of” is more natural (e.g., nrBooksAuthoredBy[p]=n). We have 
tended to use short names for predicate arguments, often using one or 
just a few suggestive letters and maybe a digit. Some people like to use 
more descriptive names for the arguments. For example, instead of 
isParentOf(p1,p2) they might use isParentOf(parent,child).

In LogiQL, predicates are typed, so each argument of the predicate 
is constrained in its declaration to belong to a specific, named type. 
For  example, suppose you make the following type declaration for a 
predicate named runs:

runs(p, c) -> Person(p), Company(c).

Now suppose that you want to record facts about people running races. 
If you try to use the same predicate name runs for these facts, you will get 
an error because the type of the runs predicate would then be ambiguous:

runs(p, r) -> Person(p), Race(r). // Error!

One way to fix this error is to expand the predicate name to include the 
type name of the second argument:

runsRace(p, r) -> Person(p), Race(r).

You could also rename the original runs predicate to runsCompany, but 
this is not required to resolve the error. Now suppose you also wish to record 
facts about horses running races. If we add the following declaration, we get 
another error, because the type of runsRace would be ambiguous:

runsRace(h, r) -> Horse(h), Race(r). // Error!



Appendix F: Programming Conventions    ◾    273

One way to fix this error is to expand the predicate name to include the 
type names of all its arguments:

horseRunsRace(h, r) -> Horse(h), Race(r).

If you wish, you could do this also for the previous predicates, renaming 
them as personRunsCompany and personRunsRace, although this 
is not required.

In the above examples, we embedded the type names inside the predi-
cate name simply by concatenation. Another naming style that is often 
used is to prepend the type names to the rest of the predicate name, 
using a colon (‘:’) separator. Applying this naming style to all three of the 
above predicates leads to the predicate names person:company:runs, 
person:race:runs, and horse:race:runs. The three predicates 
would then be declared as follows:

Person(p), person:company:runs(p, c) -> Company(c).
Person(p), person:race:runs(p, r) -> Race(r).
Horse(h), horse:race:runs(h, r) -> Race(r).

This naming style ensures distinct predicate names and facilitates searching 
for predicates based on the same type(s). It is also convenient for refmode 
predicates, since these may now be named by prepending the entity type 
name to a short refmode name. For example, the following declarations

Monarch(m), hasMonarchName(m:mn) -> string(mn).
Country(c), hasCountryCode(c:cc) -> string(cc).
State(s), hasStateCode(s:sc) -> string(sc).

may be rephrased as follows:

Monarch(m), Monarch:name(m:mn) -> string(mn).
Country(c), Country:code(c:cc) -> string(cc).
State(s), State:code(s:sc) -> string(sc).

However, in most cases this naming style makes the code longer and less 
natural to verbalize. For example, compare the following two declarations 
with their alternatives below:

hasGivenName(p, gn) -> Person(p), string(gn).
fatherOf[p1] = p2 -> Person(p1), Person(p2).



274    ◾    Appendix F: Programming Conventions

pers�on:string:hasGivenName(p, gn) -> Person(p), 
string(gn).

pers�on:person:hasFather[p1] = p2 -> Person(p1), 
Person(p2).

Note that LogiQL allows the same predicate to be declared on multiple 
subtypes of a common supertype. For example, in the below program 
isLicensed is constrained to instances of Doctor and Driver, which 
are overlapping subtypes of Person:

Person(p), person:name(p:n) -> string(n).
Driver(d) -> Person(d).
Doctor(d) -> Person(d).
lang:isEntity[`Driver] = true.
lang:isEntity[`Doctor] = true.
isLicensed(d) -> Driver(d).
isLicensed(d) -> Doctor(d).

Here, valid arguments to the isLicensed predicate are constrained to 
be people who are both drivers and doctors (i.e., instances of the inter-
section of Driver and Doctor). The LogiQL compiler effectively infers 
Person as a common type for this predicate. If instead you intend that 
there are two different predicates for being licensed, one for driving an 
automobile and one for practicing medicine, then you must name these 
predicates differently:

isLicensedToDrive(d) -> Driver(d).
isLicensedToPractiseMedicine(d) -> Doctor(d).

USE OF INDENTATION AND WHITESPACE
	 1.	Surround occurrences of arrows, either right arrows (‘->’) or left 

arrows (‘<-’), with spaces.

	 2.	In executable code, follow commas (‘,’) with a space. For stand-
alone predicate signatures, the spaces may be elided (i.e., 
hasGivenName(p,gn)).

	 3.	When using the functional notation, surround occurrences of equals 
signs (‘ = ’) with spaces.

	 4.	Surround occurrences of the disjunction operator (‘;’) with spaces.



Appendix F: Programming Conventions    ◾    275

	 5.	 Indent the second and subsequent lines in a rule or constraint four 
spaces to the right of the first line.

	 6.	Keep individual lines to 80 characters or less.

	 7.	When splitting a rule or constraint across lines, put the left or right 
arrow at the end of the last line of the head.

COMMENTS
	 1.	Comments in this book that are associated with examples indicate 

how to verbalize the commented code.

	 2.	LogiQL comment text should be separated from the comment indi-
cators by at least one space.

NAMING AND CAPITALIZATION
	 1.	 If any identifier comprises multiple words, capitalize all words after 

the first.

	 2.	Lowercase letters start the names of non-entity predicates, such as 
property predicates. These take the form of verbs or verb phrases.

	 3.	Entity type names begin with an uppercase letter and take the form 
of a noun or a noun phrase.

	 4.	Names for refmode predicates should begin with “has” followed by 
the entity type name followed by an indicator of the refmode’s repre-
sentation, such as “Name” or “Code.”

	 5.	Express a binary functional predicate in the functionOf style, 
where the name of a property is followed by “Of” or another relevant 
preposition such as “By”.

	 6.	Names of non-functional predicates with two or more arguments 
can take the form of a verb, possibly adjacent to the types of the 
arguments. That is, a type might follow the verb, or the verb might 
be surrounded by two type names.

	 7.	Variable names are typically one or two letters, beginning with a 
letter descriptive of the type or purpose the variable plays in the rule 
or constraint. If the rule is so complex that more descriptive names 
are required of the variables, it may be better to split the rule or con-
straint into pieces.



276    ◾    Appendix F: Programming Conventions

	 8.	Underscores should not normally be used in names. Exceptions to 
this rule are allowed for occurrences of anonymous variables and 
predicates and to indicate the positions of arguments in verbalizing 
predicate names, as used, for example, in Unit 4.1.

Exercise 1: Explain what is wrong with the following code, and revise it 
to avoid the problem:

Person(p), person:name(p:n) -> string(n).
Gun(g), gun:serialNr(g:n) -> string(n).
fired(p1, p2) -> Person(p1), Person(p2).
fired(p, g) -> Person(p), Gun(g).



Appendix F: Programming Conventions    ◾    277

ANSWERS TO EXERCISES

Answer to Exercise 1:

		� The fired predicate is declared to have different types that have no 
common supertype. To fix this, at least one of the fired predicates 
needs to be renamed. To avoid confusion, it’s best to rename both. 
Here is one solution that expands the predicate names to distinguish 
their meanings:

	 Person(p), person:name(p:n) -> string(n).
	 Gun(g), gun:serialNr(g:n) -> string(n).
	 firedPerson(p1, p2) -> Person(p1), Person(p2).
	 firedGun(p, g) -> Person(p), Gun(g).

		� Here is another solution that prepends the type names with a colon to 
the original predicate names:

	 Person(p), person:name(p:n) -> string(n).
	 Gun(g), gun:serialNr(g:n) -> string(n).
	 pers�on:person:fired(p1, p2) -> Person(p1), 

Person(p2).
	 person:gun:fired(p, g) -> Person(p), Gun(g).


