
253

Appendix D:
Built-In Operators
and Predicates

This appendix provides a brief summary of many of the most useful
operators and predicates that are pre-defined in LogiQL.

BUILT-IN OPERATORS

Logical Operators

The main logical operators are shown in Table D.1. These are also called
propositional operators because they operate on propositional expres-
sions to form another proposition. The priority indicates the relative
order in which the operators are evaluated unless over-ridden by use of
parentheses. Negation has highest priority (1), conjunction has prece-
dence over disjunction, and the arrow operators have lowest priority (4).
Expressions inside parentheses are evaluated before operating on them
from outside.

For example, the following rules are equivalent:

AdultPerson(p) <-
 MalePerson(p), !Boy(p) ; FemalePerson(p), !Girl(p).
AdultPerson(p) <-
 (MalePerson(p), !Boy(p)) ; (FemalePerson(p),

!Girl(p)).
AdultPerson(p) <-
 (MalePerson(p) ; FemalePerson(p)), !(Boy(p) ;

Girl(p)).

254 ◾ Appendix D: Built-In Operators and Predicates

Numeric Operators

Numeric operators, also known as arithmetic operators, operate on numeric
expressions to return a numeric value. Unary negation (‘–’) has highest
priority, and unary addition is not supported. Multiplication (‘*’) and
division (‘/’) have precedence over addition and subtraction. Operators
with the same priority are evaluated left to right. For example, given the
 following rules, querying n1 and n2 returns 4 and 2, respectively. LogiQL
numeric operators are shown in Table D.2.

n1[] = -1+4/2*3-1. // n1 evaluates to 4.
n2[] = 8/2/2. // n2 evaluates to 2.

When operating on integer expressions, the division operator (‘/’) performs
integer division, removing any fraction from the result. To retain the frac-
tion, use the float:divide function instead. For example, given the
following rules, if you query the predicate n3 you will get 1 as the result,
and if you query the predicate n4 you will get 1.16667:

n3[] = 7/(2*3). // n3 evaluates to 1.
n4[] = float:divide[7f, 2f*3f]. // n4 evaluates to
 // 1.16667.

When placed between string expressions, the ‘+’ operator performs
string concatenation. For example, given the following code, querying
name returns “Albert Einstein”:

name[] = n -> string(n).
name[] = "Albert" + " " + "Einstein".

Comparison Operators

The comparison operators shown in Table D.3, also known as
 comparators, can be used to compare the values of scalar expressions

TABLE D.1 Logical Operators

Symbol Meaning Priority Operation Name
! Not 1 Negation
, And 2 Conjunction
; Or 3 Disjunction
-> Implies 4 Implication
<- If 4 Converse implication

Appendix D: Built-In Operators and Predicates ◾ 255

of primitive types (numbers, string and datetime). The ordering
comparators are (‘<’, ‘>’, ‘<= ’, ‘>= ’). When applied between strings,
alphabetic ordering is used (e.g., “Alan” < “Ann”). All comparators
have the same priority.

An ordering comparator may be immediately followed by another
ordering comparator. For example, the following formula is shorthand for
the formula below it:

0 < = n < 10
0 < = n, n < 10 // Same as above.

If n is an integer variable, the formula means that n is a digit (i.e., one of
0, 1, 2, 3, 4, 5, 6, 7, 8, 9).

Precedence

Numeric and string operators have precedence over comparators, which
in turn have precedence over logical operators. For example, the following
two formulas are equivalent:

!2 + 3 > 2 * 3
!((2 + 3) > (2 * 3)) // Same as above.

Table D.4 summarizes the overall priorities of the main operators discussed.

TABLE D.2 Numeric Operators

Symbol Meaning Priority
− Unary minus 1
* Multiply 2
/ Divide 2
+ Add 3
− Subtract 3

TABLE D.3 Comparison Operators

Symbol Meaning
= Is equal to
! = Is not equal to
< Is less than
> Is greater than
< = Is less than or equal to
> = Is greater than or equal to

256 ◾ Appendix D: Built-In Operators and Predicates

BUILT-IN PREDICATES

Numeric Functions

We now summarize many of the most useful built-in predicates in
Table D.5. Numeric functions take one or more numeric arguments and
return a number. Note the use of the square brackets instead of parenthe-
ses around the argument(s).

The next three mathematical functions, shown in Table D.6, are trigono-
metric. The argument of each function is an angle. In the right-angled tri-
angle shown in Figure D.1, the sine of the angle θ is the ratio of the opposite
side (a) to the hypotenuse (h)—that is, sine(θ) = a/h. The cosine is the ratio
of the adjacent side to the hypotenuse—that is, cosine(θ) = b/h. The tangent
is the ratio of the opposite side to the adjacent side—that is, tan(θ) = a/b.
The angles of a triangle add up to 180 degrees, which equals θ radians. The
value of θ is approximately 3.1416. When using these functions in LogiQL,
the angle must be expressed in radians rather than degrees.

The three mathematical functions shown in Table D.7 deal with expo-
nentials and logarithms. Like π, the exponential constant e is irrational.
(It cannot be expressed as the ratio of two integers.) Its value is the limit
of (1 + 1/n)n as n approaches infinity and is approximately 2.71828. The
function ex is called the exponential function. If en = x, then n is the natural
logarithm of x, or logarithm of x to base e, which is written as loge (x) or
simply log(x). If 10n = x, then n is the common logarithm, or logarithm to
base 10, of x, and is written as log10(x).

String Functions

String functions take string expressions as arguments. Recall the use of
the string:like(str,pattern) function for string pattern match-
ing, where str is a string expression and pattern is a quoted string that may

TABLE D.4 Precedence of Operators

Symbol Operator Type Priority
− Numeric (unary minus) 1
*,/ Numeric (multiply, divide) 2
+, − Numeric (add, subtract) 3
+ String (concatenate) 3
=, ! =, <, >, <=, >= Comparator 4
! Logical (negation) 5
, Logical (conjunction) 6
; Logical (disjunction) 7

Appendix D: Built-In Operators and Predicates ◾ 257

TABLE D.5 Numeric Functions

Function Meaning Examples
abs[x] Absolute value of x (i.e., x with its sign

removed)
abs[3f] = 3f
abs[-3f] = 3f

ceil[x] Ceiling of x (i.e., the smallest floating
point integer > = x)

ceil[5.0f] = 5f
ceil[5.1f] = 6f
ceil[5.7f] = 6f

floor[x] Floor of x (i.e., the greatest floating
point integer < = x [a truncation
operation])

floor[5.0f] = 5f
floor[5.1f] = 5f
floor[5.7f] = 5f

pow[x,n] x to the power n (i.e., x0 = 1 x1 = x,
x2 = x*x, x3 = x * x * x, etc.)

pow[4f, 0f] = 1f
pow[4f, 1f] = 4f
pow[4f, 2f] = 16f
pow[4f, 3f] = 64f

sqrt[x] Non-negative square root of x (i.e., the
non-negative number that returns x
when multiplied by itself)

sqrt[4f] = 2f
sqrt[16f] = 4f
sqrt[5f] = 2.23607f

TABLE D.6 Trigonometric Functions

Function Meaning Examples
sin[x] Sine of angle x (where x is

in radians)
sin[0f] = 0f
sin[3.1416f/2f] = 1f
sin[3.1416f/4f] = 0.707108f

cos[x] Cosine of x (where x is in
radians)

cos[0f] = 1f
cos[3.1416f/2f] = 0f
cos[3.1416f/4f] = 0.707108f

tan[x] Tangent of x (where x is in
radians)

tan[0f] = 0f
tan[3.1416f/3f] = 1.73206f
tan[3.1416f/4f] = 1f

h

b

a

q

FIGURE D.1 Right triangle used to define trigonometric functions.

258 ◾ Appendix D: Built-In Operators and Predicates

include an underscore (‘ _ ’), as a wildcard denoting any single character
and the percentage character (‘%’), and as a wildcard for any sequence of
zero or more characters. For example, string:like(cc,"CS%") is satis-
fied if cc starts with the characters CS, and string:like(cc,"__ 1%")
is satisfied if cc has ‘1’ as its third character.

The string:substring[s,p,n] function returns the substring of
string s that starts at position p, and is n characters in length. Note that the
starting position is numbered from 0, so the first character in the source
string is at position 0, the second character is at position 1, and so on. For
example:

string:substring["ABC", 0, 2] returns "AB".
string:substring["ABCDE", 2, 3] returns "CDE".

The string:replace[s,oldPart,newPart] function replaces each occur-
rence in string s of the substring oldPart by newPart. For example:

string:replace["ACCA", "C", "B"] returns "ABBA".
st ring:replace["John Smith", "John", "Ann"] returns "Ann
Smith".

The string predicates that we have used in this book are summarized
in Table D.8.

Type Conversion Functions

The type conversion functions t1:t2:convert[exp] are used to con-
vert an expression of type t1 to type t2:

int:string:convert[65] returns "65".
string:float:convert["65"] returns 65.

TABLE D.7 Exponential and Logarithmic Functions

Function Meaning Examples
exp[x] ex (i.e., e to the power x) exp[0f] = 1f

exp[1f] = 2.71828f
exp[2f] = 7.38906f

log[x] Power to which e must be
raised to give x (i.e., n where
en = x)

log[1f] = 0f
log[2.71828f] = 1f
log[10f] = 2.30259f

log10[x] Power to which 10 must be
raised to give x (i.e., n where
10n = x)

log10[1f] = 0f
log10[2.71828f] = 0.434294f
log10[10f] = 1f

Appendix D: Built-In Operators and Predicates ◾ 259

TA
B

LE
 D

.8

St
ri

ng
 F

un
ct

io
ns

Fu
nc

tio
n

M
ea

ni
ng

Ex
am

pl
es

s

+

t

C
at

en
at

io
n

of
 s

an
d

t
"
A
B
C
"

+

"
D
E
F
"

=

"
A
B
C
D
E
F
"

s
t
r
i
n
g
:
l
e
n
g
t
h
[
s
]

Le
ng

th
 o

f s
tr

in
g

s
s
t
r
i
n
g
:
l
e
n
g
t
h
[
"
"
]

=

0

s
t
r
i
n
g
:
l
e
n
g
t
h
[
"
a
b
c
"
]

=

3

s
t
r
i
n
g
:
l
i
k
e
(
s
,
p
)

M
at

ch
 st

rin
g

s a
ga

in
st

 p
at

te
rn

 p
s
t
r
i
n
g
:
l
i
k
e
(
"
A
B
B
C
A
"
,

"
_
B
B
%
"
)

s
t
r
i
n
g
:
l
o
w
e
r
[
s
]

Lo
w

er
ca

se
 v

er
sio

n
of

 st
rin

g
s

s
t
r
i
n
g
:
l
o
w
e
r
[
"
A
B
C
"
]

=

"
a
b
c
"

s
t
r
i
n
g
:
r
e
p
l
a
c
e
[
s
,
o
p
,
n
p
]

Re
pl

ac
e

oc
cu

rr
en

ce
s o

f o
p

w
ith

 n
p

in
 s

s
t
r
i
n
g
:
r
e
p
l
a
c
e
[
"
A
C
C
A
"
,

"
C
"
,

"
B
"
]

=

"
A
B
B
A
"

s
t
r
i
n
g
:
s
p
l
i
t
[
s
,
c
,
i
]

ith
 se

gm
en

t o
f s

 a
s d

et
er

m
in

ed
 b

y
ch

ar
ac

te
r c

s
t
r
i
n
g
:
s
p
l
i
t
[
“
A

B

C
”
,

"

"
,

2
]

=

"
C
"

s
t
r
i
n
g
:
s
u
b
s
t
r
i
n
g
[
s
,
n
,
l
]

Su
bs

tr
in

g
of

 s
st

ar
tin

g
at

 p
os

iti
on

 n
 o

f l
en

gt
h

l
s
t
r
i
n
g
:
s
u
b
s
t
r
i
n
g
[
"
A
B
C
D
E
"
,

1
,

2
]

=

"
B
C
"

s
t
r
i
n
g
:
u
p
p
e
r
[
s
]

U
pp

er
ca

se
 v

er
sio

n
of

 st
rin

g
s

s
t
r
i
n
g
:
u
p
p
e
r
[
"
a
b
c
"
]

=

"
A
B
C
"

260 ◾ Appendix D: Built-In Operators and Predicates

Aggregation Functions

Aggregation functions operate on a collection of facts and return a single
value for some property of the collection considered as a whole. The four
most important of these functions are count, total, min, and max.
These functions are invoked using the following special syntax, where
the variable is assigned the result of evaluating the function over those
instances of the collection that satisfy condition:

agg<<v = count()>> condition
agg<<v = f(x)>> conditionOfx // f is one of total, min, max

These four functions are summarized in Table D.9 using examples that
have been discussed elsewhere in this book.

In addition to the above aggregation functions, the seq and list
functions can be used to produce sorted results:

seq<<v = x>> conditionOfx

produces values for v in ascending order taken from the values of x pro-
duced by conditionOfx. Alternatively, list works with a pair of functions
producing the first and next elements produced by an input condition.
Uses of list take the following form:

first(v1), next(v1, v2) <- list<< >> conditionOfv.

first and next can then be used to navigate through the values
 produced by the condition in ascending order.

TABLE D.9 Aggregation Functions

Function Meaning and Example
count() Count of the number of instances where the condition is true, e.g.,

nrChildrenOf[p] = n <-
agg<<n = count()>> isParentOf(p, _).

total(x) Sum of the values that satisfy the specified condition, e.g.,
totalExpenseOfClaim[c] = t <-
agg<<t = total(e)>> claimItemExpense[c, _] = e.

min(x) Minimum value of that satisfies the specified condition, e.g.,
minIQ[] = n <-
agg<<n = min(iq)>> iqOf[_] = iq.

max(x) Maximum value of that satisfies the specified condition, e.g.,
maxIQof[g] = n <-
agg<<n = max(iq)>> iqOf[p] = iq, genderOf[p] = g.

Appendix D: Built-In Operators and Predicates ◾ 261

Range Predicates

The range population predicates numericType:range(start,end,increment,
x) are useful for populating a variable x of numericType with a range of num-
bers from start to end, incrementing by increment. For example, the follow-
ing populates rank with all the integers from 0 through 100:

int:range(0, 100, 1, rank)

datetime Predicates

Several date and time predicates are pre-defined for working with date-
time values. A date value may be entered as a #-delimited string in mm/
dd/yyyy format. For example, #02/15/1946# denotes the date February
15 in the year 1946. Care is needed with datetime data, since the time
zone defaults to the time zone of the computer used to enter the data. This
can easily result in dates being one day off from what you might expect.
This issue can be addressed at least partly by including the name of the
time zone (e.g., CET for Central European Time) just before the closing
#. You can also include time data in hours, and optionally minutes and
seconds, in hh, or hh:mm, or hh:mm:ss format after the year data. For
example, #02/15/1946 15:05:40 GMT# denotes the instant that is 3 hours,
5 minutes, and 40 seconds after midday on February 15, 1946, in the
Greenwich Mean Time zone.

The following program and data are used to illustrate some of the more
useful datetime functions:

// Schema
Person(p), hasPersonName(p:n) -> string(n).
birthdateOf[p] = bd -> Person(p), datetime(bd).
deathdateOf[p] = dd -> Person(p), datetime(dd).
birthdateOf[p] = d1, deathdateOf[p] = d2 -> d1 <= d2.

// Data
+birthdateOf["George VI"] = #12/14/1895 GMT#.
+deathdateOf["George VI"] = #02/06/1952 GMT#.

The function datetime:format[dt,formatString] returns the value
of the datetime variable dt in the POSIX date-time format speci-
fied in formatString. The function datetime:formatTZ[dt,
formatString,timezone] gives you greater control of the output by
including the time zone. For example, the following rule may be used to

262 ◾ Appendix D: Built-In Operators and Predicates

reformat the GMT birthdates from the default “%m/%d/%Y%H:%M:%S”
format to the day-month-year format and to ensure that the time zone
remains GMT:

dmyG MTbirthdateOf[p] = datetime:formatTZ[bd,
"%d/%m/%Y", "GMT"] <- birthdateOf[p] = bd.

For the sample data, querying the dmyGMTbirthdateOf predicate
returns

George VI, 14/12/1895

The function datetime:part[dt,part] returns the specified part of the
datetime value. The part is one of “year”, “month”, “day”, “hour”,
“minute”, “second”. For example, the following rule may be used to
extract just the birth year from the birthdate. For the data shown, query-
ing the birthYearOf predicate returns 1895:

birthYearOf[p] = y <-
 birthdateOf[p] = bd, datetime:part[bd, "year"] = y.

The function datetime:partTZ[dt,part,timezone] extends this
function by including the time zone. For example, if, in the above
rule, you replace datetime:part[bd,"year"] by datetime:
partTZ[bd,"year","GMT"] you will get the same result, 1895, for
the sample data.

The function datetime:offset[dt1,dt2,unit] returns the duration
of the interval from d1 to d2 measured in terms of the number of speci-
fied units. The unit is specified as one of “years”, “months”, “days”,
“hours”, “minutes”, “seconds”. Care is required when using this
offset function, as the value returned is based on simple subtraction. For
example, recall the following example from the Chapter 1 Consolidation
Exercise. To compute the actual age at death, we need to subtract a year
from the approximate death age if the day of year of a person’s death
occurs before the day of year of the person’s birth:

approxDeathAgeOf[p] = n <-
 birthdateOf[p] = d1, deathdateOf[p] = d2,
 datetime:offset[d1, d2, "years"] = n.

Appendix D: Built-In Operators and Predicates ◾ 263

This appendix has now summarized most of the pre-defined operators,
functions, and other predicates that are useful in typical applications.
LogiQL includes other built-in predicates not discussed here. For a full
list of built-in predicates, issue the following command on an existing
 workspace: lb workspace list.

