
249

Appendix C:
LogiQL Syntax

This appendix provides an overview of LogiQL’s syntax. Its goal is to
give a general picture of how LogiQL programs are structured. Hence,

some details have been left out and some nuances glossed over. Moreover,
you should be aware that even though a program segment is syntactically
valid, executing it still may lead to unexpected results or error messages.

The notation used in this appendix is a version of EBNF (Extended Backus
Naur Form) in which syntax categories are separated from their definitions
via ‘::=’ and are terminated with a period (‘.’). Literal text is surrounded by
quotation mark symbols (‘"’). Some definitions have alternatives separated
by a vertical bar (‘|’), and optional constructs are suffixed with a question
mark (‘?’). Appending an asterisk (‘*’) to an item indicates zero or more
 occurrences of that item, and adding a plus sign (‘+’) indicates one or more
occurrences of that item. Finally, parentheses are used to group syntactic
elements.

LEXICAL SYNTAX
The lexical syntax of LogiQL is typical of other programming languages.
We make special note here only of unusual features:

comment ::= "//" text to end of line |
 "/*" text "*/".
identifier ::= (letter | digit | "$" | "?" | "_" |

":")+.

Identifiers may not begin with digits, and the use of an underscore as
the first character of an identifier is interpreted specially by the LogiQL
engine. Note also that identifiers may contain embedded colons (‘:’):
integer ::= digit+.
fpnum ::= integer ("." integer)? (exponent)? "f".

250 ◾ Appendix C: LogiQL Syntax

exponent ::= ("e" | "E") ("+" | "-")? integer.
decnum ::= integer (("." integer) | "d" |

("." integer d?)).
string ::= """ text """.
boolean ::= "true" | "false".

LogiQL provides a datetime literal, delineated with number signs (‘#’):

datetime ::= "#" date (time)? (timezone)? "#"
date ::= integer "/" integer "/" integer.
time ::= integer ":" integer (":" integer)?.
timezone ::= text.

Strings are contained within paired quotation mark characters (‘"’) and
may contain escapes indicating the occurrence of otherwise unrepre-
sentable characters, such as newlines. Escape sequences take one of two
forms, both beginning with a backslash character (‘\’). In the first form,
the remainder of the sequence consists of one of the characters (‘"’, ‘b’, ‘t’,
‘n’, ‘f’, ‘r’, ‘\’) standing for, respectively, a quotation mark, a backspace, a
tab, a newline, a form feed, a carriage return, or a backslash character. In
the second form, the backslash character is followed by a lowercase ‘u’ (for
Unicode) and exactly four hexadecimal characters ('0-9,A-F,a-f') that
provide the hexadecimal code for the desired Unicode character.

Braces (‘{’ and ‘}’) may be used for grouping of program elements. In
particular, hierarchical assertions and module declarations use braces.

GRAMMAR
A LogiQL program consists of a series of clauses, which can take
several forms:

program ::= clause*.
clause ::= fact | rule | constraint.

The simplest form of clause is called a fact, and it consists of a single
formula:

fact ::= formula.

Facts are used to describe the population of the predicate mentioned in
the formula.

Slightly more complex are rules, which look like the following:

rule ::= formula "<-" formula.

Appendix C: LogiQL Syntax ◾ 251

In the case of rules, there are two formulas separated by a left-hand
arrow. The intent of a rule is to say that if the right-hand formula (the
body) evaluates to true, then so must the left-hand formula (the head).

The third form of clause is called a constraint in the LogiQL
 grammar. Constraints are used either to declare predicates or to limit
the facts that can populate them. Grammatically, there are three forms
of constraints:

constraint :: = formula "->" formula.
constraint :: = "->" formula.
constraint :: = "!" formula.

In the first form, the intent is to say that if the left-hand side evaluates
to true, then the right-hand side must also evaluate to true. In the
 second form, there is an implicit true on the left-hand side. In the third
form the right-hand side has an explicit negation, and there is an implicit
true on the left-hand side and an implicit arrow. If, during execution,
any constraint fails to hold, then that constraint is violated, and execution
of the transaction containing the constraint is aborted.

Most formulas are compound, being formed from smaller formulas
using some form of punctuation. For example, comma (‘,’) is used to express
a conjunctive formula built up from two or more other formulas. Similarly,
semicolon (‘;’) is used in disjunctive formulas. A negation formula is denoted
by prepending an exclamation point (‘!’), and parentheses (‘(’ and ‘)’) may be
used to group formulas for readability or to express precedence.

There are three other kinds of formulas. The first involves atoms,
the second involves aggregation functions, and the third involves exprs
 (expressions), possibly separated by comparators (comparison operators):

formula ::= atom
 | aggregation
 | expr (comparator expr)+
 | formula "," formula
 | formula ";" formula
 | "!" formula
 | "(" formula ")".

An atom comprises an identifier providing a name for a predicate
and a parenthesized arglist (argument list), where positions in the list
correspond to the predicate’s roles. Arglists are of two forms. The first
is a comma-separated list of exprs, while the second comprises a single

252 ◾ Appendix C: LogiQL Syntax

refmode reference. The identifier may optionally be preceded by a
 deltaop, indicating that the predicate population is to be changed.
Similarly, an optional stage suffix may be appended to the identifier,
giving the programmer access to interim execution states of the predicate:

atom ::= (deltaop)? identifier (size)? (stage)?
"(" arglist ")".

deltaop ::= "+" | "-" | "*" | "^".
size ::= "[" integer "]".
stage ::= "@" ("prev" | "previous" | "init" |

"initial" | "final").
arglist ::= (expr ("," expr)*)?
 | identifier ":" (identifier | constant).
co mparator ::= "=" | "!=" | "<" | ">" | "< =" | "> = ".

Aggregation functions have their own syntax, looking like the following:

aggregation ::= "agg<<" identifier "=" atom ">>"
 formula.

The final, major element of LogiQL syntax is the expr, typically used to
denote a value:

expr ::= identifier
 | literal
 | expr arithop expr
 | identifier "[" arglist "]"
 | "(" expr ")".
liter al ::= string | boolean | fpnum | decnum |

integer | datetime.
arithop ::= "+" | "-" | "*" | "/".

Exprs can take several forms. The simplest exprs are either iden-
tifiers or literals. Other exprs are used to indicate functional
 application if they take the form of an identifier followed by an
 arglist in square brackets (‘[’ and ‘]’). Still other exprs express
arithmetic combinations of simpler exprs. Finally, as with formulas,
exprs can be grouped by surrounding them with parentheses.

