
241

Appendix A: Running
Your Programs

LogiQL programs and the workspaces they deal with are managed by
a command interpreter invoked by issuing the lb command to the oper-

ating system’s shell. At a high level, these commands interact with a server pro-
cess responsible for managing one or more workspaces. This includes creating
them, adding and removing blocks, installing data, and displaying results.

Each of these commands* takes the following form:

lb commandName [options | arguments]

Options control the execution of the given command, and arguments typi-
cally supply names of workspaces or files. Not all options are pertinent to
all commands.

For example, the simple command lb status tells you whether the
server process is running. Normally, when you run this command, you
should expect to see the response: Server is 'ON'. If you do not see this,
then you should run the command lb services start to get it running.

Note that the lb command and all of its subcommands take the
optional -h option that responds with a description of the (sub)command
and its options and arguments.

One of the first things you will need to do to run your program is to
create a workspace for it. The lb create command is used to do this for
you. For example, the command

lb create workspaceName
Create a new workspace with name workspaceName.

*	 Examples in this appendix use the bash command language found on Linux.

242    ◾    Appendix A: Running Your Programs

creates a workspace with name workspaceName, which appears in italics
to indicate that you can supply a name of your choice for the created work-
space. The newly created workspace will be subsequently managed by the
lb command. What this means is that the files containing your programs
and data are under the control of the server, and you should not expect to
see any changes in your current working directory.

There are two options to lb create you might want to use under certain
circumstances: (1) lb create --unique creates a workspace with a
unique name; that is, you do not have to supply the name. You might use this
option if you are running a short test and do not expect to retain the results.
(2) lb create --overwrite workspaceName reuses an existing name
by first ensuring that the old contents of the workspace with the supplied
name are deleted.

After you have created the workspace, you will want to add your pro-
gram to it. This is called installing the program in the workspace. Assuming
that your program is contained in the file named program.logic, you
can accomplish this goal with the following lb command. Note that the
suffix on the program name should be ".logic":

lb addblock -f program.logic workspaceName
Add the program in file program.logic to the
workspace named workspaceName.

Complementing the lb addblock subcommand is lb exec. Whereas
addblock is used to install your intensional database (IDB) rules, exec
is used to alter the extensional database (EDB), typically by asserting new
facts. Here is an example of using exec to update workspaceName with
assertions/retractions taken from the file programData.logic:

lb exec -f program.logic workspaceName
Update the EDB in workspaceName with assertions
and retractions from the file programData.logic.

For both addblock and exec you have the option of including logic on
the command line. That is, instead of using the -f fileName argument,
you can instead include the logic explicitly at the end of the line. If you do
this, however, you should be careful to enclose the logic within apostro-
phes to ensure that the shell does not try to execute your code.

Appendix A: Running Your Programs    ◾    243

Of course, it does not do you much good to install a program and execute
facts unless you can also query the results. There are several ways to do
this with the lb command. One way is with the query subcommand.
That is, lb query workspaceName 'someLogic' executes the query
expressed in someLogic against the workspaceName workspace.

Another way to effect this query is to include it as a query predicate in
one of the fact files you execute. A query predicate’s name begins with
an underscore, and its resultant facts are reported to the user rather than
being stored into the workspace. For example, if the factData predicate
is declared as follows:

factData[u, c, v] = fData ->
	 Unit(u), Category(c), Version(v), float(fData).

then the query predicate

_(u, c, f) <- factData[u, c, "Budget"] = f.

retrieves those facts from factData for which the Version is “Budget”.
If this predicate has been defined, then you can use the --print option to
lb exec to see the results:

lb exec workspaceName -f query.logic --print

A third way to see the results of your computation is to use the lb print
workspaceName predicateName command to print out the facts stored in a
predicate. There are two arguments to lb print: workspaceName contain-
ing the name of your workspace, and predicateName naming the predicate
you are interested in. The lb print command prints out all of the facts in
the named predicate.

The commands described above as well as several other helpful
commands are summarized in Table A.1 through Table A.4.

TABLE A.1  Commands for Creating Workspaces

Workspace Commands
lb create workspaceName Create a workspace with the name workspaceName.
lb create --unique Create a workspace with a (new) unique name.
lb create --overwrite
workspaceName

Create a workspace workspaceName. If one already
exists with that name, overwrite it.

244    ◾    Appendix A: Running Your Programs

TABLE A.2  Commands for Adding Logic

Adding Logic
lb addblock -f fileName
workspaceName

Add the logic contained in file fileName into
workspace workspaceName.

lb addblock workspaceName
'someLogic'

Add the logic expressed explicitly as
someLogic into workspace workspaceName.

TABLE A.3  Commands for Adding and Querying Data

Adding Data and Querying
lb exec -f fileName
workspaceName

Execute the logic in file fileName against
workspace workspaceName.

lb exec workspaceName
'someLogic'

Execute someLogic against workspace
workspaceName.

lb exec -f fileName
workspaceName --print

Execute logic in file fileName against workspace
workspaceName and display the contents of any
anonymous predicates.

lb query workspaceName
'someLogic'

Execute the query expressed in someLogic against
workspaceName.

TABLE A.4  Other Useful Commands

Other Useful Commands and Options
lb print workspaceName
predicateName

Display the contents of predicate predicateName
in workspaceName.

lb predinfo workspaceName
predicateName

Display information about predicate
predicateName contained in workspaceName,
including its arity, types of its arguments, and
other physical and logical properties.

lb list workspaceName List the predicates defined in workspaceName.
lb addproject workspaceName
directoryName

Install a compiled project into the workspace
named workspaceName. directoryName is
the name of the directory containing your
project file.

lb delete workspaceName Delete the workspace named workspaceName.
lb workspaces List the currently managed workspaces.
lb version List the version of the runtime engine currently

active.
lb compile file fileName Compile file fileName.
lb compile project
[--out-dir directoryName]
[--libpath path
projectFileName]

Compile the project whose project file is named
projectFileName. If --out-dir is provided,
then place the compiled files into directory
directoryName. If --libPath is provided,
then use path to find libraries referenced in the
project’s code.

Appendix A: Running Your Programs    ◾    245

lb INTERACTIVE
In addition to command-line invocation of lb described above, you can
execute the subcommands interactively. If you merely type the command
lb by itself, you will see a prompt displayed (lbi >). You can then enter
any of the subcommands you need to use (without the lb prefix). That is,
if you have a series of commands you would like to execute, running lb
interactively in this fashion may be easier than running them from the
shell. When you wish to leave interactive mode, you can type exit at
the prompt.

A slight variant to the above interactive usage is also available to you.
If you have a series of subcommands that you wish to run repeatedly,
you can type them into a file (without the lb prefix). Then, you can
run the sequence from the shell by entering lb fileName, where file-
Name is the name of the file containing them. The subcommands will
be executed one after the other, and you should see the results displayed
on your screen.

CAVEAT
This glimpse of lb should give you enough information to get started
running programs. In so doing, you may be tempted to copy examples
from this book. If you do so, be aware that some seemingly innocent
text copied from a .pdf file, while looking correct, may actually use ille-
gal characters. For example, the hyphen character (‘-’), although look-
ing identical to the hyphen you type to lb or include in a .logic file,
is actually represented by different characters in the .pdf file and the
command window or editor into which you are typing. You may see an
unexpected error message from lb or the execution engine if it detects
such a character. For example, if you copy the following line from this
appendix:

lb exec -f file.logic ws

you will see the following error message printed:

ERROR. Invalid argument: '–f'

To work around this problem, you can either type the text in directly, copy
it from one of the included resource files, or edit the pasted text to substi-
tute for the hyphens before executing the command.

