
83

C h a p t e r 3

Diving Deeper

CONTENTS
Unit 3.1: The max and min Functions 84

Argmin and Argmax 87
Summary of Aggregation Functions 88

Unit 3.2: Safety Conditions for Rules and Queries 89
Unit 3.3: Derivation Rule Semantics 95
Unit 3.4: Delta Rules and Pulse Predicates 102

Delta Modifiers 103
Delta Logic 105
Pulse Predicates 105

Unit 3.5: Transaction Processing 109
Transactions 110
Transaction Processing Example 113
Stage Suffixes 117
Summary 118

Unit 3.6: Additional Built-in Operators and Functions 120
Arithmetic 120
String Manipulation 121
Aggregation Functions for Ordering 124

Unit 3.7: Consolidation Exercise 3 130
Answers to Exercises 134

Answer to Exercise 1A 134
Answer to Exercise 1B 134
Answer to Exercise 2A 135
Answer to Exercise 2B 135

84 ◾ LogiQL: A Query Language for Smart Databases

This chapter builds on the concepts and syntax of the LogiQL
language considered in the previous chapters, introducing some

more advanced features of the language and describing how programs
are executed by the LogiQL engine. The first unit discusses aggregation
functions for computing minima and maxima. We then identify some
safety conditions to ensure that rules and queries execute in a finite time.
After this, a description is given of how derivation rules are processed.
Then come two units relating to the handling of changes to the EDB. The
first examines how delta rules and pulse predicates may be used to make
changes to the database, and the second provides a simple explanation
of how transactions are supported in LogiQL. The final unit considers
some further built-in operators and functions (scalar or aggregation)
that can be useful. The consolidation exercise at the end gives you an
opportunity to test your mastering of the new concepts and syntax con-
sidered in the chapter.

UNIT 3.1: THE max AND min FUNCTIONS
This unit discusses two additional aggregation functions, max and min,
that are used to find the minimum or maximum value that satisfies a spec-
ified condition. They are applied using the same syntax that we have seen
 previously: If x and y are individual variables, f denotes one of the max or
min functions, and Cx denotes a condition in which x is used as a vari-
able, then the following syntax is used to assign the value of f(x) to y
when the condition Cx is true:

agg<<y = f(x)>> Cx // y = f(x) where Cx is true

Answer to Exercise 3 135
Answer to Exercise 4A 136
Answer to Exercise 4B 136
Answer to Exercise 4C 137
Answer to Exercise 5A 137
Answer to Exercise 5B 137
Answer to Exercise 5C 138
Answer to Exercise 5D 138
Answer to Exercise 6A 139
Answer to Exercise 6B 139
Answer to Exercise 6C 139

Diving Deeper ◾ 85

As a simple example, consider Table 3.1 of proposed IQs, which we coded
earlier using the following predicate declarations:

Person(p), hasPersonName(p:n) -> string(n).
iqOf[p] = iq -> Person(p), int(iq).

Using maxIQ[] to denote the maximum IQ and minIQ[] for the mini-
mum IQ, we can use the max and min functions in aggregation rules to
derive these values as follows:

maxIQ[] = n -> int(n).
maxIQ[] = n <- agg<<n = max(iq)>> iqOf[_] = iq.
// maxIQ equals the maximum IQ of any person.

minIQ[] = n -> int(n).
minIQ[] = n <- agg<<n = min(iq)>> iqOf[_] = iq.
// minIQ equals the minimum IQ of any person.

If you run the program with the data shown and then print or query the
maxIQ and minIQ predicates, you will get 160 and 140, respectively.

Unlike the total function, which applies only to numeric values,
the max and min functions may be used with values of any ordered
datatype (e.g., where the less than operator ('<') is defined). For exam-
ple, character strings may be ordered alphabetically using <, so we
may derive the maximum (sorted last, alphabetically) person name as
follows:

maxPersonName[] = n -> string(n).
maxP ersonName[] = n <- agg<<n = max(pn)>>

hasPersonName(_:pn).
// maxPersonName is the person name that is last
// when person names are ordered alphabetically.

For the data shown, querying maxPersonName returns "Hillary
Clinton".

TABLE 3.1 IQs of Famous People
Person IQ
Hillary Clinton 140
Albert Einstein 160
Bill Gates 160

86 ◾ LogiQL: A Query Language for Smart Databases

Now that maxIQ[] has been derived, we may use it to derive who are
the brightest people (in the sense of having the highest IQ), as follows:

isBrightest(p) -> Person(p).
isBrightest(p) <- iqOf[p] = maxIQ[].
// Person p is brightest if the IQ of p is the maximum
// IQ.

For the data shown, printing the isBrightest predicate returns the
following:

/— - start of isBrightest facts— -\
Bill Gates
Albert Einstein

\— — end of isBrightest facts— — /

Now consider Table 3.2, which is an extended report on IQs based on the
same Web site used earlier, which adds gender details.

To include the gender facts, we extend the previous program with the
following code:

Gender(g), hasGenderCode(g:gc) -> string(gc).
genderOf[p] = g -> Person(p), Gender(g).
genderOf[_] = g -> g = "M" ; g = "F".
Person(p) -> genderOf[p] = _.

The following aggregation rule may now be used to derive the maximum
IQ for each gender:

maxIQof[g] = n -> Gender(g), int(n).
ma xI Qof[g] = n <- agg<<n = max(iq)>> iqOf[p] = iq,

genderOf[p] = g.
// maxIQof gender g is maximum IQ of people of
// gender g.

TABLE 3.2 Genders and IQs of Famous
People
Person Gender IQ
Albert Einstein M 160
Bill Gates M 160
Dwight Eisenhower M 122
Marilyn vos Savant F 228
Hillary Clinton F 140
Nicole Kidman F 132

Note: M, male; F, female.

Diving Deeper ◾ 87

Note that the condition for an aggregation function may be a conjunction,
as in the example above. When run with the data in the extended report, a
print of the maxIQof predicate returns the following results:

/— - start of maxIQof facts— -\
F, 228
M, 160

\— — end of maxIQof facts— — /

The code for the complete IQ program discussed in this unit is available as
IQ3.logic and the data is available as IQ3data.logic.

Argmin and Argmax

Suppose that in the above IQ example maxIQ is not yet defined and we
want to compute not only the maximum IQ but also the person who has it.
Would it be acceptable to include this computation in the following rule?

isBrightest(p) -> Person(p).
is Br ightest(p) <- iqOf[p] = n, agg<<n = max(iq)>>

iqOf[_] = iq.

No! The above code generates an error because of the following syntax
requirement. If an aggregation function definition is used in the body of
a rule, it must comprise the whole body of the rule. The aggregation func-
tion definition (of the form agg<<y = f(x)>> Cx) cannot be com-
bined with any other formula in the body. This requirement is violated in
the above rule because another conjunct (iqOf[p]=n) is included in the
rule body.

When computing a maximum value, it is often desirable to determine
not only the value but also the item that has that value. For example, in
computing the maximum IQ value, we also wanted to know who has
that value. The set of one or more instances of a function argument that
returns the maximum value for that function is said to be the argmax of
the function. For example, the set of person(s) with the highest IQ is the
argmax of the iqOf function. Similarly, the set of one or more instances
of a function argument that returns the minimum value for that function
is the argmin of the function. Background on the use of argmax and arg-
min in mathematics may be found in the Wikipedia article on “Arg_max.”

Intuitively, for a given function, its argmax or argmin may be com-
puted in two steps, by first computing the maximum or minimum value,

88 ◾ LogiQL: A Query Language for Smart Databases

respectively, and then determining the set of item(s) associated with that
maximum/minimum value. For example, above we used the max function
to compute maxIQ, the maximum value returned from iqOf, and then
used the isBrightest rule to derive the person(s) with that maximum IQ.

Summary of Aggregation Functions

The aggregation functions considered so far are summarized in Table 3.3.

Tip: When including aggregation function definitions in the body of a
rule, ensure that nothing else is included in the rule body.

Exercise 1A: A program and data for the following expense report are
shown in Table 3.4. You may also access them as the files expenses.
logic and expensesData.logic. Extend the program to derive
which item(s) is/are the most expensive, run the program with the data
shown, and print the result:

// Schema
Item(i), hasItemName(i:n) -> string(n).
expenseOf[i] = e -> Item(i), decimal(e).
Item(i) -> expenseOf[i] = _.
// Each item has an expense.

// Data
+expenseOf["Travel"] = 300.50.
+expenseOf["Accommodation"] = 300.50.
+expenseOf["Meals"] = 100.20.

TABLE 3.3 Aggregation Functions
Aggregation Function Result Returned
count() Number of instances satisfying the specified condition
total(x) Sum of numeric x values satisfying the specified condition
max(x) Maximum x value satisfying the specified condition
min(x) Minimum x value satisfying the specified condition

TABLE 3.4 Travel Expenses
Item Expense (US$)
Travel 300.50
Accommodation 300.50
Meals 100.20

Diving Deeper ◾ 89

Exercise 1B: The program and data for the expense claims for the
report in Table 3.5 are available as the files expenses5.logic and
 expenses5Data.logic. Extend the program to compute, for each
claim, the most expensive item(s) for that claim. Then run the program
with the data supplied and print the results.

UNIT 3.2: SAFETY CONDITIONS FOR RULES AND QUERIES
As a programmer, you want to write high-quality code. This means not
only that the code is correct, efficient, and well documented, but that it is
robust (able to deal with a variety of inputs) and that it does not go into
infinite loops. LogiQL constraints help you write robust programs, and
the LogiQL compiler helps you ensure that your program does not run
indefinitely. Roughly speaking, a derivation rule or query is safe if and
only if it is guaranteed to return a finite result using a procedure that ter-
minates in a finite time. In this unit we discuss a number of restrictions
that the LogiQL compiler places on rules and queries to ensure that they
are safe. If you try to compile a rule or query that violates any of these
restrictions, you will get an error message.

This unit is primarily concerned with helping you avoid situations
where a computation might be required to look at an infinite number of
possibilities. If we have a simple predicate populated with a finite number
of asserted facts, and we try to compute a subset of the facts satisfying a
simple condition, then we do not run into any trouble. For example, if we
have a list of people along with their IQ data and we ask for the IQ of a
particular person, then we cannot get in trouble, even if the person is not
in the database. The computation merely checks each of the finite number
of asserted facts to produce its answer.

There are some features of LogiQL, however, that could potentially get
you into trouble. This unit talks about several of them including nega-
tion, disjunction, and built-in datatypes. We begin by reviewing some of
LogiQL’s syntax.

TABLE 3.5 Expense Report Claims

Expense Claim Item Expense (US$)
1 Travel 300.50
1 Accommodation 300.50
1 Meals 100.20
2 Travel 55.05
2 Meals 30.10

90 ◾ LogiQL: A Query Language for Smart Databases

Recall that an atom is the application of a predicate to a list of terms,
such as variables (possibly anonymous) or literals. For example, the fol-
lowing are atoms:

Person(p) // p is a person.
loves(p, _) // p loves something.
loves(p, "Juliet") // p loves Juliet.
loves("Romeo", "Juliet") // Romeo loves Juliet.

An atom that is not in the scope of a logical not operator ('!') is called a
positive atom. An atom in the scope of a logical not operator is called a
negated atom. Here are some examples of negated atoms:

!Person(x) // x is not a person.

!likes(p1, p2) // p1 does not like p2.
!likes("Leopold Kronecker", "Georg Cantor")
// Leopold Kronecker does not like Georg Cantor.

Let us use the term domain predicate for a predicate specific to the
application domain that can be populated with only a finite set of data.
The facts that populate domain predicates are either explicitly asserted
by the user (and hence their number is finite), or they are derived from
other domain predicates using safe rules. Domain predicates are distinct
from the predicates used for built-in datatypes (e.g., int,string) and
predefined operations (e.g., '=', '+', '<').

Let’s look at a typical rule that takes the form of a head consisting of
a positive atom and the body comprising a conjunction of one or more
positive or negative atoms. For example, the body of the following rule
is a conjunction of two positive atoms involving a domain predicate
(isParentOf), and one negative atom involving a built-in equality pred-
icate ('=').

isBrotherOf(x, y) -> Person(x), Person(y).
is Br otherOf(x, y) <- isParentOf(z, x),

isParentOf(z, y), x ! = y.
// x is a brother of y if some z is a parent of x and y
// and x is not equal to y.

The following safety condition provides one syntactic check to help deter-
mine whether a rule or query of this type is safe.

Diving Deeper ◾ 91

SC1: Each variable appearing in the head of a rule must also appear
in the rule’s body. Moreover, its appearance in the body must be
in a positive context, as an argument of either a domain predicate
or a domain equality. In the case of a domain equality, the other
operand of the equality must be either a constant expression or a
domain variable that occurs in a positive context.

The purpose of this rule is to prevent situations where a variable in the
body of a rule can take on an unlimited number of values. For example,
the isBrotherOf derivation rule above satisfies this safety condition
because each of its head variables (x and y) can only take values that arise
from the isParentOf predicate. (Note that in the next chapter we dis-
cuss two cases, derived-only predicates and head existentials, where the
above condition may be safely broken.)

As a simple example of a rule that violates the above safety condition,
consider the following unsafe rule:

isFemale(x) <- !isMale(x). // Unsafe rule!
// x is female if x is not male.

This illegal rule declares that everything that is not male is female. This is
far too strong a rule, as it includes anything in the application domain that
is not male (e.g., houses, names, etc.). Moreover, in an infinite domain,
the result could be infinite. To fix the derivation rule, we need to restrict
the variable to range over the relevant domain predicate (e.g., Person
or Animal). For example, the following rule satisfies SC1 because its
sole head variable (x) occurs in the body as the argument of the positive
domain atom Person(x):

isFemale(x) <- Person(x), !isMale(x).
// x is female if x is a person and not male.

Each of the following rules also violates SC1. Can you see why?

is Text(x) <- string(x). // Unsafe rule!
po sitiveNumber(x) <- decimal(x), x > 1.0.
// Unsafe rule!

Although the head variable x appears in positive context in the body of the
above rules, it appears only with built-in predicates, not domain predicates.

92 ◾ LogiQL: A Query Language for Smart Databases

Conceptually, there are infinitely many strings and numbers, so the result
is potentially infinite. Even though computer systems store strings and
numbers using only a finite number of bits, for all practical purposes it
would still be undesirable to deal with such a large number of possible
strings or numbers.

The following two safe rules illustrate cases where a head variable does
not appear in the body in a domain predicate, but it does appear in a sim-
ple equality, where the other operand is either a constant expression or a
domain variable in a positive context:

isEven(n) <- n = 2.
uses(p, c) <- drives(p, b), b = c.

In the first rule, n can only take one value, the integer 2. In the second
rule, p appears positively inside of the drives predicate. Although c is
not inside of drives, it must be equal to b, and b is inside of drives.
So c is similarly finitely bounded.

Now consider the following schema and data:

// Schema
Person(p), hasPersonName(p:n) -> string(n).
CarModel(cm), hasModelName(cm:n) -> string(n).
drives(p, cm) -> Person(p), CarModel(cm).
NonDriver(p) -> Person(p).
NonDriver(p) <- Person(p), !drives(p, _).
// A nondriver is a person who does not drive any car
// model.
lang:isEntity['NonDriver] = true.

// Data
+Person("Terry"), +Person("Norma"), +Person("Lee").
+drives("Terry", "Mazda").
+drives("Lee", "Ford").

If you run the program with the data shown, and then print the
NonDriver predicate, you will obtain the correct result: Norma. The
rule for NonDriver satisfies SC1 because the sole head variable (p)
occurs in the body in the positive domain atom Person(p). Note that an
anonymous variable (_) occurs only in a negated atom, but this does not
violate the safety condition because it is not a head variable.

Diving Deeper ◾ 93

Now consider the following two lines from our program. On first look,
the use of the anonymous variable in the NonDriver rule indicates that
a nondriver is a person who does not drive anything (not just car models).
However, given the type declaration for the drives predicate, the LogiQL
compiler can infer that anything driven is a car model, so there is no need
to state that explicitly:

drives(p, cm) -> Person(p), CarModel(cm).
NonDriver(p) <- Person(p), !drives(p, _).

LogiQL is able to handle some variants of the above that involve more
complex syntax. For example, it can handle simple negated conjunctions
such as the following:

is Un suitable(p) <- Person(p), !(isHardworking(p),
isIntelligent(p)).

SC2: Each named variable appearing in the scope of a negation within the
body of a rule must also appear in a positive context in that rule body.

In addition to conjunctions and simple negations, LogiQL allows the
body of a rule to include logical disjunctions, whose main operator is
 inclusive-or. The language treats a disjunctive rule as shorthand for a set of
simpler rules, each containing one of the disjuncts. In order for the origi-
nal disjunctive rule to be safe, each of the simpler rules must be safe. Since
each simple rule in the resulting rule set has the same head, the first safety
condition above implies the following safety condition:

SC3: Each disjunct in the body of a disjunctive derivation rule must
include the same selection of head variables; the only other vari-
ables allowed are anonymous variables.

The following safe disjunctive derivation rule satisfies this restriction:

is Pa rentOf(p1, p2) <- fatherOf[p2] = p1 ;
motherOf[p2] = p1.

This disjunctive rule is shorthand for the following two rules, both of
which are safe:

isParentOf(p1, p2) <- fatherOf[p2] = p1.
isParentOf(p1, p2) <- motherOf[p2] = p1.

94 ◾ LogiQL: A Query Language for Smart Databases

The following disjunctive rule, however, violates the above restriction:

p(x, y) <- q(x) ; r(y). // Unsafe!

Notice that if you try to rewrite this rule as a pair of simpler, non- disjunctive,
rules each of the resulting rules violates our original safety condition:

p(x, y) <- q(x). // Unsafe!
p(x, y) <- r(y). // Unsafe!

As another variant, consider queries. A query is essentially a derivation
rule where we do not care about the name of the head predicate, because
we simply want to see the result of the derivation. So the safety restrictions
discussed for derivation rules also apply to queries. For example, the fol-
lowing query to return male persons is safe, but the query after it is unsafe:

_(x) <- Person(x), !isFemale(x). // Safe query
_(x) <- !isFemale(x). // Unsafe query!

There is one other, subtler, situation you need to be aware of when con-
structing safe and robust programs. This situation arises when you have
a collection of safe rules, which, when treated as a whole, can lead to a
program that never terminates.

To understand this situation, consider a set of rules. A typical rule in the
set has a right-hand side that refers to other predicates. If any of these other
predicates is also derived, then the computation of the original rule depends
on the computation of this derivation rule. This dependency may extend to
predicates mentioned in the bodies of the new rules. A problem arises if the
rules are mutually recursive, that is, if the overall set of dependencies is cyclic.
In particular, if there is a cycle in the dependency structure that includes
either a negated atom, or an aggregation, then the LogiQL compiler cannot
guarantee termination. Hence, the following safety condition applies.

SC4: Any cyclic dependencies in a LogiQL program should not contain
negated atoms or aggregations.

Here is a program sketch illustrating a violation of this safety condition:

Youth(y), hasYouthName(y:n) -> string(n).
Boy(b) -> Youth(b).
Girl(g) -> Youth(g).
Boy(x) <- Youth(x), !Girl(x).
Girl(x) <- Youth(x), !Boy(x).

Diving Deeper ◾ 95

Note that Boy depends upon Girl, that Girl depends upon Boy, and
that negation is involved.

Imagine now the following fact assertions:

+Youth("Adam").
+Girl("Eve").
+Boy("Colin").

When the execution engine tries to compute a gender for Adam, a problem
arises. Adam is a Youth that is not (initially) a Girl, which makes Adam
a Boy. However, Adam is also not (initially) a Boy, which makes Adam a
Girl, violating the premise of the computation that made Adam a Boy in
the first place. To avoid situations like this from causing trouble, the LogiQL
compiler issues an error message. Aggregations can lead to similar problems.

Tip: When declaring rules or queries, make sure they satisfy the safety
conditions discussed in this unit.

Exercise 2A: Explain what is wrong with the following program, and
modify it to fix the error:

Light(l), hasLightNr(l:n) -> int(n).
isOn(l) -> Light(l).
isOff(l) <- !isOn(l).

Exercise 2B: Identify the safety violations in each of the following rules:

p(x, y, z) <- q(x), !r(y), z > 1.
p(x, y, z) <- q(x), r(y), s(z); q(y), r(z).

UNIT 3.3: DERIVATION RULE SEMANTICS
This unit provides a simplified account of how the LogiQL engine uses
derivation rules to compute new facts. The intent is to give you an idea of
how your program is actually executed by the LogiQL execution engine.
The example that we will use is a simple ancestry graph. Because the
ancestry relationship is recursive, multiple computation steps are required
to complete the computation.

In the graph shown in Figure 3.1, each node denotes a person, which we
identify by a single given name. An arrow from a node to a node below it

96 ◾ LogiQL: A Query Language for Smart Databases

denotes a parenthood relationship (e.g., Ann is a parent of Bill and Bob).
As our knowledge of parenthood is incomplete, some parenthood facts are
missing (e.g., for most nodes, only one parent is shown).

The following code (available in ancestry.logic and ancestry-
Data.logic) may be used to store these parenthood facts and derive who
is an ancestor of whom. For simplicity, some ring constraints (e.g., nobody
can be an ancestor of himself/herself) are omitted:

Person(p), hasPersonName(p:n) -> string(n).
isParentOf(p1, p2) -> Person(p1), Person(p2).
!isParentOf(p, p). // Nobody is his/her own parent.

isAncestorOf(p1, p2) <-
isParentOf(p1, p2) ;
isParentOf(p1, p3), isAncestorOf(p3, p2).

// p1 is an ancestor of p2 if p1 is a parent of p2 or
// p1 is a parent of some p3 who is an ancestor of p2.

Here are the corresponding fact assertions:

+isParentOf("Ann", "Bill").
+isParentOf("Ann", "Bob").
+isParentOf("Arnold", "Bob").
+isParentOf("Bill", "Chris").
+isParentOf("Chris", "Dan").
+isParentOf("Chris", "David").
+isParentOf("David", "Emily").

Ann

Bill

Chris

Dan David

Emily

Bob

Arnold

FIGURE 3.1 Parenthood example.

Diving Deeper ◾ 97

Visually, the descendants of a person node in the graph are the nodes on
the path(s) starting at that person and proceeding downward. For exam-
ple, the descendants of Bill are Chris, Dan, David, and Emily. Here is what
you would see upon querying isParentOf and isAncestorOf.

isParentOf: isAncestorOf:
 Chris, David Chris, David
 David, Emily Bill, David
 Bill, Chris Ann, David
 Chris, Dan David, Emily
 Ann, Bill Chris, Emily
 Arnold, Bob Bill, Emily
 Ann, Bob Ann, Emily
 Bill, Chris
 Ann, Chris
 Chris, Dan
 Bill, Dan
 Ann, Dan
 Ann, Bill
 Arnold, Bob
 Ann, Bob

From the seven parenthood facts, 15 ancestry facts were derived using
the recursive rule for isAncestorOf. But how was this computation
 performed by the LogiQL execution engine? There are several possibili-
ties, and the actual approach used is quite complex due to optimizations
that the engine performs. We will now describe a simple bottom-up
approach that approximates what the engine does. The approach itera-
tively applies the recursive rule to find new facts that are immediate con-
sequences of the currently known facts until we reach a state called the
fixedpoint, after which reapplication of the rule generates no new facts.

For convenience, the recursive rule is restated below. It can be thought
of as two rules, one for each disjunct in the body, with the first rule provid-
ing the basis clause, and the second rule providing the recursive clause:

isAncestorOf(p1, p2) <-
isParentOf(p1, p2) ;
isParentOf(p1, p3), isAncestorOf(p3, p2).

// p1 is an ancestor of p2 if p1 is a parent of p2
// or p1 is a parent of some p3 who is an ancestor
// of p2.

98 ◾ LogiQL: A Query Language for Smart Databases

Note that in the above, isParentOf is an EDB predicate, and isAnces-
torOf is an IDB predicate. (Its facts are computed by the above rule.)

When the isAncestorOf rule is first executed, the isParentOf
predicate is populated with seven facts, and the isAncestorOf predi-
cate is empty, which we picture as shown below:

isParentOf: isAncestorOf:
 Ann, Bill
 Ann, Bob
 Arnold, Bob
 Bill, Chris
 Chris, Dan
 Chris, David
 David, Emily

Applying the basis clause, isAncestorOf(p1,p2)<-isParentOf
(p1,p2) instantiates isAncestorOf with the seven tuples in
 isParentOf. Applying the recursive clause has no effect in this itera-
tion because isAncestorOf was empty when the rule began executing.
So at the end of this first iteration, the database is as shown below. The
new facts added in the iteration are highlighted in italics:

isParentOf: isAncestorOf:
 Ann, Bill Ann, Bill
 Ann, Bob Ann, Bob
 Arnold, Bob Arnold, Bob
 Bill, Chris Bill, Chris
 Chris, Dan Chris, Dan
 Chris, David Chris, David
 David, Emily David, Emily

The state of the database at the end of the first iteration is the same as the state
at the start of the second iteration of the rule. From here on, the basis clause
can add no new facts because we already have all the parenthood tuples in
isAncestorOf, so we need consider only the recursive clause, that is,

is An cestorOf(p1, p2) <- isParentOf(p1, p3),
isAncestorOf(p3, p2).

We can apply this rule to the database by looking for situations where a child
in the second role of the isParentOf predicate matches an ancestor in the

Diving Deeper ◾ 99

first role of the isAncestorOf predicate. For example, Bill, child of Ann,
is an ancestor of Chris, which makes Ann also an ancestor of Chris. These
matches are depicted with matching numbers in the following display:

isParentOf: isAncestorOf:
 Ann, Bill (1) Ann, Bill
 Ann, Bob Ann, Bob
 Arnold, Bob Arnold, Bob
 Bill, Chris (2) (1) Bill, Chris
 Chris, Dan (2) Chris, Dan
 Chris, David (3) (2) Chris, David
 David, Emily (3) David, Emily

As a result, the state of the database immediately after this second itera-
tion is as shown below (just the facts added in this second iteration are
highlighted):

isParentOf: isAncestorOf:
 Ann, Bill Ann, Bill
 Ann, Bob Ann, Bob
 Arnold, Bob Arnold, Bob
 Bill, Chris Bill, Chris
 Chris, Dan Chris, Dan
 Chris, David Chris, David
 David, Emily David, Emily
 Ann, Chris
 Bill, Dan
 Bill, David
 Chris, Emily

In the third iteration, applying the recursive clause to the database
results in three new ancestry facts being derived by matching a child in
a parenthood fact with an ancestor in one of the new ancestry facts, as
shown below by the matching numbers:

isParentOf: isAncestorOf:
 Ann, Bill (1) Ann, Bill
 Ann, Bob Ann, Bob
 Arnold, Bob Arnold, Bob
 Bill, Chris (2) Bill, Chris
 Chris, Dan Chris, Dan
 Chris, David Chris, David
 David, Emily David, Emily
 Ann, Chris

100 ◾ LogiQL: A Query Language for Smart Databases

 (1) Bill, Dan
 (1) Bill, David
 (2) Chris, Emily

As a result, the state of the database immediately after this third iteration is as
shown below (just the new facts added in this third iteration are highlighted):

isParentOf: isAncestorOf:
 Ann, Bill Ann, Bill
 Ann, Bob Ann, Bob
 Arnold, Bob Arnold, Bob
 Bill, Chris Bill, Chris
 Chris, Dan Chris, Dan
 Chris, David Chris, David
 David, Emily David, Emily
 Ann, Chris
 Bill, Dan
 Bill, David
 Chris, Emily
 Ann, Dan
 Ann, David
 Bill, Emily

In the fourth iteration, applying the recursive clause to this database
results in one new ancestry fact being derived by matching a child in a
parenthood fact with an ancestor in one of the new ancestry facts, as pic-
tured below by the matching number:

isParentOf: isAncestorOf:
 Ann, Bill (1) Ann, Bill
 Ann, Bob Ann, Bob
 Arnold, Bob Arnold, Bob
 Bill, Chris Bill, Chris
 Chris, Dan Chris, Dan
 Chris, David Chris, David
 David, Emily David, Emily
 Ann, Chris
 Bill, Dan
 Bill, David
 Chris, Emily
 Ann, Dan
 Ann, David
 (1) Bill, Emily

Diving Deeper ◾ 101

The state of the database immediately after this fourth iteration is as
shown below:

isParentOf: isAncestorOf:
 Ann, Bill Ann, Bill
 Ann, Bob Ann, Bob
 Arnold, Bob Arnold, Bob
 Bill, Chris Bill, Chris
 Chris, Dan Chris, Dan
 Chris, David Chris, David
 David, Emily David, Emily
 Ann, Chris
 Bill, Dan
 Bill, David
 Chris, Emily
 Ann, Dan
 Ann, David
 Bill, Emily
 Ann, Emily

Looking at these parenthood and ancestry facts, we see that the new fact
added will not lead to any more ancestry facts because Ann does not
appear as a child in a parenthood fact. Hence, if we applied a fifth iteration
of the derivation rule, the database state would remain the same as it was
in the previous state. This means that we have reached a fixedpoint of the
computation, so the derivation rule has now been fully evaluated. If you
look at the final population above, you will see that the 15 ancestry facts
are precisely those that were obtained earlier by running the program.
(The order in which the facts are displayed is irrelevant.)

Note that in the above description, the numbers in the second column
were always adjacent to facts that had been added on the previous itera-
tion. Hence, there was no need to recompute facts that had been already
derived. By default, derivation rules without delta modifiers are evaluated
incrementally by the LogiQL execution engine. This means that each sub-
sequent execution, rather than recomputing from scratch, is driven by the
changes made in the previous execution. This approach can significantly
reduce the amount of effort required to complete the execution.

Exercise 3: In the map shown in Figure 3.2, nodes denote airports
(BNE = Brisbane, KUL = Kuala Lumpur, BKK = Bangkok, LHR = London
Heathrow, HEL = Helsinki), and the arrows denote direct (nonstop) flights.

102 ◾ LogiQL: A Query Language for Smart Databases

The following code is used to store direct flights and derive flight
 connections (direct or indirect):

Airport(a), hasAirportCode(a:c) -> string(c).
hasDirectFlightTo(a1, a2) -> Airport(a1), Airport(a2).
hasFlightTo(a1, a2) <- Airport(a1), Airport(a2).
hasFlightTo(a1, a2) <-
 hasDirectFlightTo(a1, a2) ;
 hasDirectFlightTo(a1, a3), hasFlightTo(a3, a2).

Using the iterative algorithm discussed above for evaluating recursive
rules, specify the population of the predicate hasFlightTo at the end
of each iteration.

UNIT 3.4: DELTA RULES AND PULSE PREDICATES
Previously, we have used delta modifiers to indicate that facts should be
added to a database. In this unit we discuss other uses of delta modifi-
ers in derivation rules to express changes to the database. Such uses are
called delta rules to distinguish them from the IDB rules we have seen
previously. We also discuss how delta rules can be used to record transi-
tory changes or events using a particular kind of predicate called a pulse
predicate.

For the examples in this unit, let us assume that persons may be identi-
fied simply by their names. Countries may be identified by their two-letter
ISO country codes (e.g., “IE” for Ireland, “DE” for Germany, and “US” for
the United States). The following program may now be used to record facts
about persons and countries, as well as who is president of what country.
The final constraint ensures that each person is president of at most one
country at any given time:

Person(p), hasPersonName(p:pn) -> string(pn).
Country(c), hasCountryCode(c:cc) -> string(cc).
presidentOf[c] = p -> Country(c), Person(p).
presidentOf[c1] = p, presidentOf[c2] = p -> c1 = c2.

BNE

KUL

BKK LHR HEL

FIGURE 3.2 Direct flights between airports.

Diving Deeper ◾ 103

Delta Modifiers

Suppose the following assertions were made in 2008 to declare who was
then president of Germany, Ireland, and the United States:

+presidentOf["IE"] = "Mary McAleese".
+presidentOf["DE"] = "Angela Merkel".
+presidentOf["US"] = "George W. Bush".

Recall that the delta modifier “+” indicates that the fact is to be added to
the database. After adding the facts, the result of querying the presi-
dentOf predicate is as follows:

US, George W. Bush
DE, Angela Merkel
IE, Mary McAleese

The compiler treats the above fact assertions as shorthand for longer
assertions that populate not just the presidentOf predicate but also
Person, Country, and their refmode predicates. For example, here is
the result of querying Person:

George W. Bush
Angela Merkel
Mary McAleese

In January 2009, Barack Obama replaced George W. Bush to become the
president of the United States, and in June 2010, Christian Wulff became
the new president of Germany. As of May 2011, Mary McAleese was still
president of Ireland. Suppose we now want to update the database accord-
ingly. One way to do this would be to delete the presidency facts that no
longer hold and then add the new presidency facts. To delete a fact, the
delete modifier, denoted with a hyphen ('-'), is used. For example, the fol-
lowing code is used to retract two of the previous presidency facts:

-presidentOf["DE"] = "Angela Merkel".
-presidentOf["US"] = "George W. Bush".

Just as you may think of the “+” modifier as a plus sign for adding a fact,
you may think of the “-” modifier as a minus sign for subtracting a fact.
Querying presidentOf now displays just one fact:

IE, Mary McAleese

104 ◾ LogiQL: A Query Language for Smart Databases

Note that deleting the presidency facts did not delete the Person or
Country facts. For example, querying Person still returns the following:

George W. Bush
Angela Merkel
Mary McAleese

If you want to delete George W. Bush and Angela Merkel as instances of
Person from the database, you will need to do that explicitly. For exam-
ple, you may delete the two former presidents of Germany and the United
States using the following fact retractions:

-Person("Angela Merkel").
-Person("George W. Bush").

A similar comment applies for countries. However, as we intend to add
the new presidents for these countries, there is no point in deleting them.
The two new president facts may be added as follows:

+presidentOf["US"] = "Barack Obama".
+presidentOf["DE"] = "Christian Wulff".

Querying presidentOf after these upserts displays the following:

US, Barack Obama
DE, Christian Wulff
IE, Mary McAleese

Note that combining the two deletions and two insertions just discussed in
the same workspace update will not work. This is because LogiQL checks
the validity of each delta rule individually with respect to the state of the
workspace before any changes are made. That is, you cannot count on the
order in which your assertions and retractions occur in your update. For
example, placing the fact retractions before the assertions does not ensure
that the deletions are done first. In the next unit, we will see how you can use
LogiQL transactions to control the order in which workspace updates occur.

As a single-step way to replace a current value in a functional predicate
with a new value, you may use the upsert modifier, depicted as a circum-
flex ('̂ '):

^presidentOf["US"] = "Barack Obama".
^presidentOf["DE"] = "Christian Wulff".

Diving Deeper ◾ 105

As the name upsert suggests, it may be used to either update or insert.
If the key of the functional predicate already exists (e.g., “US” or “DE”), an
update is performed, as in this example. Otherwise an insertion is made.
Executing the above two upserts causes the presidentOf predicate to
hold the following values:

US, Barack Obama
DE, Christian Wulff
IE, Mary McAleese

If you had not explicitly deleted George W. Bush and Angela Merkel as
instances of Person from the database, then querying Person would
now display:

George W. Bush
Angela Merkel
Mary McAleese
Christian Wulff
Barack Obama

Delta Logic

In the above, delta modifiers were used to unconditionally assert changes
to a database. However, we might wish to make such changes condi-
tionally; that is, we might want to use derivation rules for making such
changes. In fact, delta modifiers may be used to qualify atoms in deriva-
tion rules, yielding what are called delta rules. In a delta rule, all head
atoms must have delta modifiers. A delta rule such as +p(x)<-+q(x) can
be interpreted as follows: If the database experiences an addition to the
q predicate with argument x, then add a p fact with the same argument.
Delta rules along with the assertions, retractions, and upserts described
above together comprise a program’s delta logic.

Pulse Predicates

One specialized form of delta rule makes use of pulse predicates. A pulse
predicate is useful for asserting short-lived facts. Examples of such facts
are those computed for the purpose of producing query results. Another
use is for expressing one-time events, such as user interactions with the
database through a graphical user interface (GUI).

A pulse predicate behaves as follows: For any given execution of the
LogiQL engine, the predicate starts empty. A program may assert facts to

106 ◾ LogiQL: A Query Language for Smart Databases

the predicate, but retractions are not allowed. Moreover, any assertions
made during the execution are discarded at the end of the execution.

You have already seen one use of (unnamed) pulse predicates in the
heads of queries. For example, consider the following query to list
the presidents of countries other than the United States:

_(p) <- presidentOf[c] = p, !hasCountryCode(c:"US").

For the population given above, the query result is

Mary McAleese
Christian Wulff

Once this result is computed and displayed to the user, it is thrown away and is
unavailable for later queries. That is, this anonymous predicate, denoted by
the underscore, is a pulse predicate that temporarily holds a set of derived
facts. If you want to persist these facts, you should give the predicate a name.

The other common use of pulse predicates is for capturing one-time
events such as the pressing of a button on a screen form. As a simplified
example, suppose that employee details are entered via instances of a Web
form like the one shown in Figure 3.3. Forms like this may be created
using GUI frameworks that support the creation and management of user
interfaces. In this example, the framework includes a predefined entity
type called form whose instances in a workspace are in one-to-one cor-
respondence with instances of the form in the Web browser.

Components in the form have associated predicates in the workspace
that hold their values. The above sample form includes three textfield
components to capture the employee number, family name, and a given
name of an employee. The form also includes a button (labeled “OK”) that
the user presses to submit the details on the form to the LogiQL execution
engine. The schema for the form could be declared as follows. (Note the

FIGURE 3.3 Screen form with submit button.

Diving Deeper ◾ 107

use of the colon [':'] after textField in the following code is similar to
its earlier use with datetime and string. That is, it provides a name for
a group of related predicates.)

textField:empNrOn[f] = n -> Form(f), int(n).
textField:familyNameOn[f] = fn -> Form(f), string(fn).
textField:givenNameOn[f] = gn -> Form(f), string(gn).
okButtonIsPressedOn(f) -> Form(f).
lang:isPulse[`okButtonIsPressedOn] = true.

Notice the use of the metapredicate lang:isPulse for declaring that
okButtonIsPressedOn is a pulse predicate. The name of the pulse predi-
cate is enclosed in brackets and preceded by the grave accent character ('̀ ').

When the user enters the details and submits the form instance by
pressing the OK button, we want to store the relevant data in the database.
The part of the database schema used to capture the data could be declared
as follows:

Employee(e), hasEmpNr(e:n) -> int(n).
familyNameOf[e] = fn -> Employee(e), string(fn).
givenNameOf[e] = gn -> Employee(e), string(gn).

The following code may now be used to copy the data entered on the form
instance to the database in response to the pressing of the OK button:

+Employee(e), +hasEmpNr(e:n), +familyNameOf[e] = fn,
+givenNameOf[e] = gn <-
+okButtonIsPressedOn(f),
+textField:empNrOn[f] = n,
+textField:familyNameOn[f] = fn,
+textField:givenNameOn[f] = gn.

The third line above references okButtonIsPressedOn. When the
user enters the data and presses the OK button, the GUI framework asserts
this fact, thereby invoking the execution of the rule to insert the relevant
facts into the predicates appearing in the head of the rule. Once this is
done, the pulse predicate okButtonIsPressedOn is effectively reset to
be empty again.

The above example illustrates a common use of pulse predicates to
implement event–action rules. In this case, the event is the pressing of a
button, and the action is the updating of the database.

108 ◾ LogiQL: A Query Language for Smart Databases

Tip: While insert (+) and delete (–) may be performed on any predicate
(functional or non-functional), upsert (̂) is allowed only on functional
predicates.

Tip: Avoid applying retractions and insertions to the same functional
predicate during the same update of a workspace. You cannot count on
the order in which these actions are applied.

Tip: Indicate your intent to treat a predicate as a pulse predicate with the
lang:isPulse metapredicate.

Tip: Pulse predicates may only be asserted and not retracted.

Exercise 4A: The following program (accessible as Ex4a.logic) is used to
record the name and gender of various people, as well as what languages they
speak and what languages they are fluent in. The last constraint is a subset
constraint to ensure that people are fluent only in languages that they speak:

// Declarations
Person(p), hasPersonName(p:pn) -> string(pn).
Gender(g), hasGenderCode(g:gc) -> string(gc).
La ng uage(lang), hasLanguageName(lang:ln) ->

string(ln).
genderOf[p] = g -> Person(p), Gender(g).
speaks(p, lang) -> Person(p), Language(lang).
isFluentIn(p, lang) -> Person(p), Language(lang).
// Constraints
Person(p) -> genderOf[p] = _.
hasGenderCode(_:gc) -> gc = "M" ; gc = "F".
isFluentIn(p, lang) -> speaks(p, lang).

Compile this program and then populate it with the following data (acces-
sible as Ex4aData.logic):

+genderOf["Norma"] = "F", +genderOf["Terry"] = "F".
+s pe aks("Norma", "English"), +speaks("Norma",

"French").
+isFluentIn("Norma", "English").
+s pe aks("Terry", "English"), +speaks("Terry",

"Japanese"),

Diving Deeper ◾ 109

+speaks("Terry", "Latin").
+i sFl uentIn("Terry", "English"), +isFluentIn("Terry",

"Latin").

Query the predicate genderOf. It is now discovered that Terry is actu-
ally male, not female. Write delta logic to update Terry’s gender accord-
ingly, and again query the predicate genderOf to check that your update
worked. The answer is in Ex4aAnswer.logic.

Exercise 4B: Now add a delta rule to the above program to ensure that
if a fact is added that a person is fluent in a language, another fact will
automatically be added indicating that person speaks that language. Test
your code by then executing the following update (accessible as Ex4bData.
logic), and querying the speaks predicate. Hint: Remember, you will
need to have delta-modified atoms in both the head and body of the delta
rule. The answer is in Ex4bAnswer.logic.

+isFluentIn("Norma", "Spanish").

Exercise 4C: Would it be possible to use the following IDB rule instead of
the delta rule in the answer to the previous question? That is, what happens
if a predicate contains both asserted and derived facts? Alter the above
declarations and constraints to implement this approach. Edit the fact
assertions to remove references to the speaks predicate. Print the
speaks predicate and compare it to the previous results. Explain what
has happened.

speaks(p, lang) <- isFluentIn(p, lang).

UNIT 3.5: TRANSACTION PROCESSING
We saw in the previous unit that during the execution of a rule, you
could not count on the order in which changes are made to a workspace.
Sometimes, of course, you want to control this order, and database design-
ers have invented the idea of a transaction to organize such changes. In
this unit we introduce transactions and describe at a high level their effect
on a workspace. We then briefly look under the covers of transactions, to
better understand how they are processed. Finally, we present a syntactic
device, called a stage suffix, that gives you fine-grained control over how
your data are handled during transaction processing.

110 ◾ LogiQL: A Query Language for Smart Databases

Transactions

LogiQL workspaces contain both data (the facts we have asserted or
derived) and program code (both what we have written and system code).
Figure 3.4 provides a simplified, high-level picture of the activities that
take place during the lifetime of a given workspace.

First we create the workspace. The newly created workspace contains a
standard set of system predicates, but as yet has none of our program code.
Once created, we can access and update the workspace through a series of
transactions that either succeed or fail. Successful transactions update the
workspace, whereas failing transactions leave the workspace in the state it
was in before the transaction commenced.

In order to understand more thoroughly how transactions are pro-
cessed, you need to be aware of two concepts: blocks and stages. A block is
a unit of LogiQL code, typically originating in a file with a name ending
in .logic. We have seen how, with the lb command, we can install code
blocks into workspaces. In particular, we used either the addblock or
the exec option to enter code. When the addblock option is used, the
code becomes an active block, which means that it is automatically evalu-
ated during every transaction. Conversely, the exec option can be used
to request that a block should be evaluated exactly once. Such a block is a
called an inactive block. More generally, your program has the ability to
control the activated/deactivated status of installed blocks.

The LogiQL execution engine divides evaluation into two stages as
illustrated in Figure 3.5.

The initial stage is used to process queries and provide on-demand
evaluation of inactive blocks, such as you request with the exec option to
lb. The updates requested by these blocks are tentatively accepted into the
EDB, ignoring constraints.

In the final stage, first installed delta rules residing in active blocks
are evaluated and checked against constraints. If no constraints are vio-
lated, the IDB rules in active blocks (previously installed or included in
the transaction) are evaluated and checked against the constraints. If no
constraints are violated during the execution of a transaction, the transac-
tion is committed, and the tentative data updates are applied to the work-
space. Otherwise, the transaction is aborted and the workspace is rolled
back to its previous state (the state it was in just prior to the beginning of
the transaction). In this sense, transactions are atomic, since either the
whole of a transaction is accepted or none of it is.

Diving Deeper ◾ 111

Cr
ea

te
W

or
ks

pa
ce

St
ar

t
Su

bm
it

Tr
an

sa
ct

io
n

A
bo

rt
 an

d
Ro

llb
ac

k

Ye
s

Ye
s

N
o

N
o

St
op

Ap
pl

y
Ch

an
ge

s
Er

ro
r F

re
e?

M
od

ifi
ed

W
or

ks
pa

ce

Fo
r t

he
 fi

rs
t t

ra
ns

ac
tio

n,
 th

is
is

th
e n

ew
ly

 cr
ea

te
d

w
or

ks
pa

ce
.

Fo
r l

at
er

 tr
an

sa
ct

io
ns

, i
t i

s t
he

 m
od

ifi
ed

 w
or

ks
pa

ce
 af

te
r t

he
 p

re
vi

ou
s t

ra
ns

ac
tio

n.

N
ew

ly
 C

re
at

ed
W

or
ks

pa
ce

W
or

ks
pa

ce
Pr

ev
io

us
 to

Tr
an

sa
ct

io
n

Co
nt

in
ue

?

FI
G

U
R

E
3.

4
W

or
ks

pa
ce

 a
ct

iv
ity

 fl
ow

.

112 ◾ LogiQL: A Query Language for Smart Databases

Pr
ev

io
us

In
iti

al
Fi

na
l

Ru
n

in
st

al
le

d
de

lta
 ru

le
s

an
d

ch
ec

k
co

ns
tr

ai
nt

s

Ac
ce

pt
 d

at
a u

pd
at

es
to

 E
D

B
re

qu
es

te
d

in

ex
ec

ut
ed

 d
el

ta
 ru

le
s

Er
ro

r f
re

e?
Ru

n
ID

B
ru

le
s a

nd
ch

ec
k

co
ns

tr
ai

nt
s

Er
ro

r F
re

e?
Ap

pl
y

Ch
an

ge
s

A
bo

rt
 an

d
Ro

llb
ac

k

Ye
s

N
o

N
o

Be
gi

n
Tr

an
sa

ct
io

n
Co

m
m

it
En

d
Tr

an
sa

ct
io

n

M
od

ifi
ed

W
or

ks
pa

ce

W
or

ks
pa

ce
Pr

ev
io

us
 to

Tr
an

sa
ct

io
n

Ye
s

FI
G

U
R

E
3.

5
Tr

an
sa

ct
io

n
ev

al
ua

tio
n

pr
oc

es
s.

Diving Deeper ◾ 113

We can continue this process with further transactions that install
blocks of code or execute data updates until we are finished. At any
moment of time between transactions, we are guaranteed that the state
of the workspace represents the cumulative effect of applying all previous
transactions, in the order in which they were committed.

Transaction Processing Example

To illustrate how transactions are processed, we will examine an exam-
ple from the monarchy domain. To understand how the example is
handled, an additional concept, delta predicates,* needs to be intro-
duced. When you declare a new predicate, the LogiQL compiler auto-
matically provides for you two additional predicates, called delta
predicates, one each for recording the requests for adding and delet-
ing data to the declared predicate. At the start of the initial stage of each
transaction, these delta predicates are set to be empty. If the transac-
tion includes a request to execute a data update against the declared predi-
cate, the update is tentatively recorded into the associated delta predicates
during the transaction’s initial stage. During the final stage, the delta pred-
icates are used to effect the actual changes made to the declared predicate.

For example, consider the code found in the file transactions.lb:

create --unique
ad db lock '// First transaction: install schema;

see below'
exec '// Second transaction: assert data; see below'
echo "Printing Monarch"
print Monarch
echo "Querying isFemale:"
print isFemale
close --destroy

The file’s first transaction installs the following code to declare the predi-
cates and constraints:

Monarch(m), hasMonarchName(m:n) -> string(n).
Gender(g), hasGenderCode(g:gc) -> string(gc).
genderOf[m] = g -> Monarch(m), Gender(g).
Monarch(m) -> genderOf[m] = _.
hasGenderCode(_:gc) -> gc = "M" ; gc = "F".

* Delta predicates should not be confused with delta rules, delta modifiers, or delta logic discussed
earlier.

114 ◾ LogiQL: A Query Language for Smart Databases

isFemale(m) -> Monarch(m).
isMale(m) -> Monarch(m).
isFemale(m) <- genderOf[m] = "F".
isMale(m) <- genderOf[m] = "M".

At the end of the first transaction, these predicates and their associ-
ated delta predicates are not populated, as shown in Table 3.6 for the
 genderOf and isFemale predicates. The same is true for the other
predicates, but for simplicity let’s follow the state of just the predicates
shown here, focusing on the second transaction. Note that in this and
subsequent tables in this section, the two delta predicates for these
predicates are given names with prepended plus and minus signs. For
example, the delta predicates for genderOf are labeled +genderOf
and −genderOf.

The second transaction in the file includes the following 12 requests to
insert data into the genderOf predicate:

+genderOf["Anne"] = "F".
+genderOf["George I"] = "M".
+genderOf["George II"] = "M".
+genderOf["George III"] = "M".
+genderOf["George IV"] = "M".
+genderOf["William IV"] = "M".
+genderOf["Victoria"] = "F".
+genderOf["Edward VII"] = "M".
+genderOf["George V"] = "M".
+genderOf["Edward VIII"] = "M".
+genderOf["George VI"] = "M".
+genderOf["Elizabeth II"] = "F".

At the beginning of the initial stage of the second transaction, the work-
space is the same as at the end of the first transaction, with these predi-
cates all empty. By the end of the initial stage of the second transaction,
the data updates for genderOf are tentatively accepted, which we may
picture as shown in Table 3.7. Though not shown here, the system also
manages the implied updates for Monarch, and so on.

TABLE 3.6 Initial Predicates and Delta Predicates

genderOf +genderOf −genderOf isFemale +isFemale −isFemale

Diving Deeper ◾ 115

In the final stage of the second transaction the system evaluates the
derivation rules, which in this case are isMale and isFemale. These
predicates, which were empty at the start of the final stage, are now popu-
lated as in Tables 3.8 and 3.9.

At this point, the constraints are checked, and none are violated, so the
transaction succeeds and changes to the program’s predicates (not their
associated delta predicates) are applied to the workspace.

TABLE 3.7 Predicates during the Initial Stage of the Second Transaction

genderOf +genderOf −genderOf

(“Anne”, “F”) (“Anne”, “F”)

(“George I”, “M”) (“George I”, “M”)

(“George II”, “M”) (“George II”, “M”)

(“George III”, “M”) (“George III”, “M”)

(“George IV”, “M”) (“George IV”, “M”)

(“William IV”, “M”) (“William IV”, “M”)

(“Victoria”, “F”) (“Victoria”, “F”)

(“Edward VII”, “M”) (“Edward VII”, “M”)

(“George V”, “M”) (“George V”, “M”)

(“Edward VIII”, “M”) (“Edward VIII”, “M”)

(“George VI”, “M”) (“George VI”, “M”)

(“Elizabeth II”, “F”) (“Elizabeth II”, “F”)

TABLE 3.8 isFemale Predicates during the Final Stage of
the Second Transaction

isFemale +isFemale −isFemale

"Anne" "Anne"
"Victoria" "Victoria"
“Elizabeth II” “Elizabeth II”

TABLE 3.9 isMale Predicates during the Final Stage of the
Second Transaction

isMale +isMale −isMale

"George I" "George I"
"George II" "George II"
"George III" "George III"
"George IV" "George IV"
"William IV" "William IV"
"Edward VII" "Edward VII"
"George V" "George V"
"Edward VIII" "Edward VIII"
"George VI" "George VI"

116 ◾ LogiQL: A Query Language for Smart Databases

The third transaction in the file interrogates the workspace about the
Monarch and isFemale predicates:

echo "Printing Monarch"
print Monarch
echo "Querying isFemale:"
print isFemale

At the start of the third transaction, the genderOf, isFemale, and
isMale predicates are populated as shown above, but their associated
delta predicates are reset to be empty. The other predicates (Monarch,
hasMonarchName, Gender, hasGenderCode) are also populated
accordingly. The output produced by querying isFemale comprises the
three isFemale facts in the above table.

Suppose that we now try to submit the following, fourth transaction.
This would be a mistake, because Anne is already recorded to be a female,
but let’s see how the system would process this transaction:

echo "Adding a contradictory fact"
lb exec '+genderOf["Anne"] = "M".'

At the start of the initial phase, genderOf is populated as previously and
its delta predicates are empty. At the end of the initial stage, the genderOf
predicate has one more entry, and its delta predicates are populated as
shown in Table 3.10.

TABLE 3.10 genderOf Predicates in the Initial Phase of Transaction Four

genderOf +genderOf −genderOf

("Anne", "F") ("Anne", "M")

("George I", "M")

("George II", "M")

("George III", "M")

("George IV", "M")

("William IV", "M")

("Victoria", "F")

("Edward VII", "M")

("George V", "M")

("Edward VIII", "M")

("George VI", "M")

("Elizabeth II", "F")

("Anne", "M")

Diving Deeper ◾ 117

When execution moves into the final stage and constraints are checked,
it is found that the functional nature of the genderOf predicate is vio-
lated because Anne is now assigned two genders. Therefore, the fourth
transaction is aborted. The information recorded in the program predi-
cates and their delta predicates is sufficient for the system to determine the
state of the workspace before the transaction began, simply by reversing the
proposed changes. The workspace is now rolled back to that previous state.

Stage Suffixes

LogiQL provides some syntax that enables you to explicitly denote the various
transaction stages of a predicate by qualifying its name with a stage suffix.
For a specific predicate p, p@previous (or p@prev) references the pop-
ulation of the predicate as it was immediately before the start of the transac-
tion, p@initial (or p@init) references the population of the predicate
at the end of the initial stage, and p@final references the predicate in the
final stage. In the absence of a suffix, the @final suffix is assumed.

A stage suffix can be valuable when you are trying to assess the impact
of a new fact. Say, for example, that you wish to detect when someone’s net
worth has gone down. Here is a simple illustration:

Person(p), hasPersonName(p:n) -> string(n).
netWorth[p] = n -> Person(p), int(n).
status[] = s -> string(s).
^status[] = "Trouble City!!" <-

^netWorth[p] = _, netWorth[p] < netWorth@prev[p].

Each person has a name and a net worth. We also keep track of status with
a unary predictate named status. If there is a change to the netWorth
predicate such that the new net worth is less than the old, then we want
the status to change. Let’s assume that the workspace state is initialized as
follows:

+status[] = "Okay".
+netWorth["Bob"] = 30.

Now, if we assert a new netWorth fact for Bob with a reduced value, we
should expect the status predicate to change, which it does:

^netWorth["Bob"] = 10.

This approach for evaluating impact could be applied to audit changes
coming into an application through a GUI. Alternatively, the above delta

118 ◾ LogiQL: A Query Language for Smart Databases

rule could be converted into a constraint such that the negative change in
net worth would cause the containing transaction to abort.

Summary

The processing of transactions is complex. Here is a summary of how the
LogiQL execution engine handles them:

 1. Computation is broken down into a sequence of atomic transactions,
each of which is self-contained and leaves the workspace in a consis-
tent state.

 2. The processing of a transaction comprises two stages, initial and
final. The initial stage begins with the same database state as the final
state of the previous transaction.

 3. The initial stage is responsible for recording fact assertion and retrac-
tion requests in delta predicates and handling queries. At the beginning
of this stage, delta predicates are empty. If no delta rules exist, then this
stage has no effect, other than producing the results of any queries.

 4. The final stage is responsible for processing derivation rules of active
blocks.

 5. Derivation rule processing is made up of a series of steps, each of
which may update the delta predicates. Steps continue until a fixed-
point is reached.

 6. At the end of the final stage, declared predicates are updated from
delta predicates.

Tip: The @previous suffix may be used in the body of a rule but not in
the rule head.

Exercise 5A: Alter the net worth example above to change the status
message for any change (positive or negative) to an individual’s net worth
of more than 100%. Such a change might indicate that a data entry error
had been made. Hint: You may wish to make use of the absolute value abs
numeric function.

Exercise 5B: The following code (accessible as grandparent.lb)
includes transactions to add program code for recording parenthood facts

Diving Deeper ◾ 119

and deriving grandparenthood facts, to execute some sample data, and to
issue relevant queries:

create --unique
addblock '
Person(p), hasPersonName(p:pn) -> string(pn).
isParentOf(p1, p2) -> Person(p1), Person(p2).
isGrandparentOf(p1, p2) -> Person(p1), Person(p2).
is GrandparentOf(p1, p2) <- isParentOf(p1, p3),
isParentOf(p3, p2).

'
exec '
+isParentOf("Ivor", "Norma").
+isParentOf("Norma", "Linda").
+isParentOf("Norma", "David").
+isParentOf("Terry", "Linda").
+isParentOf("Terry", "David").
+isParentOf("David", "Emily").
+isParentOf("David", "Sam").

'
echo "Querying isParentOf:"
print isParentOf

echo "Querying isGrandparentOf:"
print isGrandparentOf

close --destroy

The program code is fine so long as our knowledge of relevant parenthood
facts is complete. However, suppose instead that our knowledge is incom-
plete, and that we want to record a known grandparenthood fact even if
we do not know the parenthood facts from which it could be derived. For
example, we might know that Ivor is a grandparent of Graham without
knowing which of Ivor’s children is a parent of Graham. In this case, we
need to assert the fact that Ivor is a grandparent of Graham directly, such
as by executing the following fact assertion:

+isGrandparentOf("Ivor", "Graham").

Explain what happens if you make this assertion. How would you fix the
problem?

120 ◾ LogiQL: A Query Language for Smart Databases

Exercise 5C: One way we might try to deal with this situation is to use delta
rules instead of IDB rules to automatically add grandparent facts when
relevant parenthood facts are added. Copy the file grandparent2.
lb and modify its program code to test this new approach. For this
question, you may ignore any need to provide delta rules to manage fact
retractions.

Exercise 5D: An alternative approach to that of Exercise 5C for dealing
with incomplete knowledge of parenthood is to use an EDB predicate
asserted_isGrandparentOf for asserting grandparenthood facts,
an IDB rule derived_isGrandparentOf to derive grandparenthood
from parenthood, and then use the disjunction of these two rules to derive
isGrandparentOf, whose population is the union of the facts in the
other two predicates. Copy the file grandparent4.lb and modify its
program code to test this new approach.

UNIT 3.6: ADDITIONAL BUILT-IN OPERATORS
AND FUNCTIONS

Previous units have discussed various arithmetic operators (e.g., +, −, *),
comparison operators (e.g., <, >, =, < =, > =, ! =), logical operators (e.g.,
!, comma, ;), scalar functions (e.g., divide), and aggregation functions
(count, total, min, and max). This unit discusses some further built-
in operators and functions that you may find useful.

Arithmetic

LogiQL includes a variety of mathematical functions for manipulating
numeric data. As a simple example, the following program (maths.lb)
uses abs to compute the absolute value of a number and sqrt to com-
pute the square root. Note that while the absoluteValueOfTemp pred-
icate contains two facts, the sqrtOfTemp has only one. Can you think
why this might be?

One of the two temperatures is negative; its square root is undefined:

create --unique
addblock ws '

Temperature(t), hasCelsiusValue(t:cv) -> float(cv).
ab soluteValueOfTemp[t] = at -> Temperature(t),
float(at).

ab soluteValueOfTemp[t] = at <-
hasCelsiusValue(t:cv), abs[cv] = at.

Diving Deeper ◾ 121

sqrtOfTemp[t] = st -> Temperature(t), float(st).
sq rtOfTemp[t] = st <- hasCelsiusValue(t:cv),
sqrt[cv] = st.

'
exec '

+Temperature(25f), +Temperature(-20f).
'
echo "Querying absoluteValueOfTemp:"
print absoluteValueOfTemp
echo "Querying sqrtOfTemp:"
print sqrtOfTemp
close --destroy

The query output is as follows

Querying absoluteValueOfTemp:
25, 25
−20, 20
Querying sqrtOfTemp:
25, 5

String Manipulation

LogiQL also includes operators and functions that are handy for string
manipulation. For example, you can use the string concatenation operator
('+') to paste together two string arguments. The following program
(concatNames.lb) uses + to derive the full name of employees by concat-
enating their given name to a space character and then to their family name:

create --unique
addblock '
Employee(e), hasEmpNr(e:n) -> int(n).
givenNameOf[e] = gn -> Employee(e), string(gn).
familyNameOf[e] = fn -> Employee(e), string(fn).
Em ployee(e) -> givenNameOf[e] = _,
familyNameOf[e] = _.

fullNameOf[e] = pn -> Employee(e), string(pn).
fu llNameOf[e] = pn <- pn = givenNameOf[e] + " " +
familyNameOf[e].

'
exec '
+g ivenNameOf[1] = "John", +familyNameOf[1] =
"Smith".

122 ◾ LogiQL: A Query Language for Smart Databases

+givenNameOf[2] = "Eve", +familyNameOf[2] = "Jones".
'
echo "Querying fullNameOf:"
print fullNameOf
close --destroy

When run, the query output is as follows:

Querying fullNameOf:
2, Eve Jones
1, John Smith

The string:like function is handy for string pattern match-
ing. It has the form string:like(str,pattern) where str is a
string expression and pattern is a quoted string that may include the
wildcard characters (' _ '), meaning any single character, and ('%'),
meaning any sequence of zero or more characters. The following pro-
gram (courses.lb) demonstrates its use for finding the computer sci-
ence courses (those courses whose course codes begin with “CS”) and
the entry-level courses (those courses whose course codes have “1” as
their third character):

create --unique
addblock '

Course(c), hasCourseCode(c:cc) -> string(cc).
ComputerScienceCourse(c) -> Course(c).
ComputerScienceCourse(c) <- hasCourseCode(c:cc),
 string:like(cc, "CS%").
EntryLevelCourse(c) -> Course(c).
En tryLevelCourse(c) <- hasCourseCode(c:cc),
string:like(cc, "__1%").

'
exec '

+Course("CS100"), +Course("CS200"),
 +Course("MA100").

'
echo "Querying ComputerScienceCourse:"
print ComputerScienceCourse
echo "Querying EntryLevelCourse:"
print EntryLevelCourse
close --destroy

Diving Deeper ◾ 123

The query results are as shown below:

Querying ComputerScienceCourse:
CS100
CS200

Querying EntryLevelCourse:
CS100
MA100

To illustrate some other string manipulation functions, consider the prob-
lem of extracting a person’s last name when given the person’s full name. To
make things interesting, the last name may contain several parts, such as
“Marilyn vos Savant.” Here is how you might accomplish this task, assum-
ing the full names are given to you in the predicate hasPersonName:

lastName(s) -> string(s).
// Extract the last name from a Person's full name
lastName(s) <-

hasPersonName(_:n),
f = string:length[string:split[n, " ", 0]],
// Length of first name
t = string:length[n], // Length of full name
string:substring[n, f + 1, t - f - 1] = s.

Several other string functions are used to perform the extraction. The
string:length function is used twice, once to compute the length of
the first name and once to compute the total name length. Its argument is
the string whose length is desired.

The person’s first name is extracted using string:split to break
out that part of the full name from its start up until the first space
 character. Its arguments are the string to be split, the character upon
which the split is based, and an index into the resulting segment. The
result of string:split is the specified segment of the argument
string.

Finally, the last name is extracted using the string:substring
function, beginning with the character after the first space and continu-
ing for a number of characters computed by subtracting off the length of
the first name.

We will see this code segment again in the next section when used to
demonstrate some of the LogiQL functions for ordering data.

124 ◾ LogiQL: A Query Language for Smart Databases

Aggregation Functions for Ordering

We now discuss two more aggregate functions useful for ordering the
facts in a predicate. Recall Table 3.11 of IQs considered in Unit 2.6.

Suppose we want to see these values in ascending order. Such rank-
ing queries assign numeric ranks to the objects in an ordered list.
For this to be possible, the values must be based on one of LogiQL’s
 primitive types, for which an ordering relation (e.g., less than, <) is
ensured.

LogiQL provides two aggregation functions for ranking the facts
in a predicate based on the values of one of the predicate’s roles: seq
generates ranks suitable for indexing into the facts according to the
order of the role’s values; list enables navigation through the predi-
cate’s facts from least to greatest in single steps. As with other aggrega-
tion functions, the data that is being ranked can be computed using a
condition.

Aggregation rules using the seq function take the following form,
where xValueOfRank is replaced by the name of a ranking predicate
that associates each rank r with the x value that has that rank. Cx is the
condition that provides the data being ranked.

xValueOfRank[r] = x <- seq<<r = x>> Cx.
// For each rank r, return the x value of that rank ,
// where Cx is true.

Note that since the ranking predicate is populated with a set of facts as a
result of this derivation, the seq “function” is not a function in the usual
sense (where a single value is returned), unlike the aggregation functions
considered previously (count, total, min, and max).

As an example of the use of seq, the following program (taken
from IQtop.lb) returns the IQ values from the data in the table in

TABLE 3.11 IQs of Famous People

Person IQ
Albert Einstein 160
Bill Gates 160
Dwight Eisenhower 122
Marilyn vos Savant 228
Hillary Clinton 140
Nicole Kidman 132

Diving Deeper ◾ 125

ascending order. First, the Person entity is declared along with a
property predicate providing IQs for Persons and corresponding
constraints:

Person(p), hasPersonName(p:pn) -> string(pn).
iqOf[p] = iq -> Person(p), int(iq).
iqOf[_] = iq -> iq < = 250. // Each IQ is at most 250.
Person(p) -> iqOf[p] = _. // Each person has an IQ.

We can populate these predicates with data as follows:

+iqOf["Albert Einstein"] = 160.
+iqOf["Bill Gates"] = 160.
+iqOf["Dwight Eisenhower"] = 122.
+iqOf["Marilyn vos Savant"] = 228.
+iqOf["Hillary Clinton"] = 140.
+iqOf["Nicole Kidman"] = 132.

If we query iqOf, the following results are as shown here:

Nicole Kidman, 132
Hillary Clinton, 140
Marilyn vos Savant, 228
Dwight Eisenhower, 122
Bill Gates, 160
Albert Einstein, 160

Now, we would like to see the IQ scores in ascending order. To do this, we
first separate out the IQ scores into a separate predicate, iqScores.:

iqScores(iq) -> int(iq).
iqScores(iq) <- iqOf[_] = iq.

We will now use seq to compute the rankings and store them into the
iqOfRank functional predicate:

iqOfRank[i] = iq -> int(i), int(iq).
iqOfRank[i] = iq <- seq<<i = iq>> iqScores(iq).

A query of iqOfRank then produces the following results:

0, 122
1, 132

126 ◾ LogiQL: A Query Language for Smart Databases

2, 140
3, 160
4, 228

There are several ways that we can extend this simple example to deal with
more interesting situations. Say we wanted to know not only what the
order of scores was, but which people had those scores. This is easily done
by adding another predicate, orderedIQof that combines the ordering
information with the original iqOf predicate:

orderedIQof[p, iq] = i -> Person(p), int(iq), int(i).
or de redIQof[p, iq] = i <- iqOfRank[i] = iq,

iqOf[p] = iq.

The result of printing orderedIQof is the following. Note, in particular,
that the actual rankings are specified in the third column and not in the
order in which the facts are displayed:

"Nicole Kidman" 132 1
"Marilyn vos Savant" 228 4
"Bill Gates" 160 3
"Albert Einstein" 160 3
"Hillary Clinton" 140 2
"Dwight Eisenhower" 122 0

Other variants you might find useful are to sort the facts in descending
order or to see just a subset of the values. Here are the addition rules you
would use to compute just the largest three values of IQ data:

numberOfIQs[] = n -> int(n).
nu mb erOfIQs[] = n <- agg<<n = count()>>

iqOfRank[i] = _.
// The number of different IQ values.

topThreeIQvalues[i] = iq -> int(i), int(iq).
to pT hreeIQvalues[i] = iq <- numberOfIQs[] = n ,

iqOfRank[j] = iq, j > = n - 3, i = n - j.
// The top three IQ values.

Another way of accessing ordered data is using a linked list. The list
aggregation supports this approach by populating two predicates. The first,
unary, predicate holds the head of the list, and the second, binary, predicate
holds pairs containing an element of the list as well as the next element.

Diving Deeper ◾ 127

Here is an example of using list to compute a report of IQs in alpha-
betical order of the person’s last name. The example also illustrates use of
some of the string functions described the earlier in this unit.

The example reuses the same basic schema as the previous example:

Person(p), hasPersonName(p:s) -> string(s).
iqOf[p] = iq -> Person(p), int(iq).
iqOf[_] = iq -> iq < = 250. // Each IQ is at most 250.
Person(p) -> iqOf[p] = _. // Each person has an IQ.

It also reuses the rule we developed in the last section for extracting last
names:

lastName(s) -> string(s).
// Extract the last name from a Person's full name
lastName(s) <- hasPersonName(_:n),

f = string:length[string:split[n, " ", 0]],
// Length of first name
t = string:length[n], // Length of full name
string:substring[n, f + 1, t - f - 1] = s.

Once the last names have been extracted, they can be ordered using the
list aggregation function:

head(n) -> string(n).
// The head node of a linked list.
next(n1, n2) -> string(n1), string(n2).
// The source-target links in a linked list.
head(n1), next(n1, n2) <- list<< >> lastName(n1).
// Store the sorted last names into a linked list.

In the above snippet, two predicates (head and next) are defined. Head
holds the alphabetically least last name, and next holds pairs of last names
such that the first element of the pair is immediately succeeded, in alpha-
betical order, but the second list<< >> is used to simultaneously populate
these two predicates, taking its source data from the lastName predicate.

To produce the output report, the nodes of the linked list are visited
in order, each providing the data to produce a segment of the report. The
segments are pasted together to produce the final report:

visit[n] = s -> string(n), string(s).
// Traverse the linked list

128 ◾ LogiQL: A Query Language for Smart Databases

vi si t[n1] = s <- next(n1, n2), s = format[n1] +
visit[n2].

// Format head and recursively concatenate to the
// remainder
visit[n] = s <- next(_, n), !next(n, _), s = "".
// The last element must be in the list and not have a
// successor

Traversal is accomplished with the visit function, which, for each node
visited, recursively computes the report for the contents of the linked list
from that node on, concatenating the results using the string addition
function ('+').
Visit makes use of a utility function, format, for retrieving the IQ

information associated with a given last name and formatting the results.
Note that for this example, format assumes that last names are unique.
Also, format makes use of the string:like and string:convert
predicates described above:

format[n] = s -> string(n), string(s).
// Format one line of the output report
format[n] = s <- lastName(n), hasPersonName(p:fn),

string:like(fn, "% " + n),
iqOf[p] = iq,
int:string:convert[iq] = siq,
s = fn + ": " + siq + "\n".

It remains only to start off the visiting process on the first element of the
linked list:

report(s) -> string(s).
report(s) <- head(n), s = visit[n].

The code for this example can be found in the file IQlist.lb.

Tip: Become familiar with the full set of available built-in functions so
you can make use of them when the occasion arises.

Exercise 6A: Table 3.12 (available in USCitiesData.logic) stores
name and population data for various major cities in the United States.
Population figures are for the year 2010. Although cities are primarily

Diving Deeper ◾ 129

identified here by a city number, the combination of their city name and
state is also unique.

A basic schema for this example is shown below:

City(c), hasCityNr(c:n) -> int(n).
State(s), hasStateName(s:sn) -> string(sn).
cityNameOf[c] = cn -> City(c), string(cn).
stateOf[c] = s -> City(c), State(s).
populationOf[c] = n -> City(c), int(n).
Ci ty (c) -> cityNameOf[c] = _, stateOf[c] = _,

populationOf[c] = _.
ci ty NameOf[c1] = cn, stateOf[c1] = s,

cityNameOf[c2] = cn, stateOf[c2] = s ->
c1 = c2.

// Each combination of city name and state refers to
// at most one city.

The file USCities.lb includes this schema and extends it with the
 following declaration and rule stub, as well as the relevant data and
query:

extendedCitynameOf[c] = ecn -> City(c), string(ecn).
extendedCitynameOf[c] = ecn <-
// *** supply the rule body here

The derived predicate extendedCitynameOf is intended to store the
extended name of cities, where an extended name consists of the city name
and its state name, separated by a comma. Complete the derivation rule

TABLE 3.12 City Populations

City Number City Name State Name Population
1 Cleveland Ohio 396,815
2 Columbus Georgia 189,885
3 Columbus Ohio 787,033
4 New York New York 8,175,133
5 Portland Maine 66,194
6 Portland Oregon 583,776
7 Los Angeles California 3,792,621
8 San Diego California 1,307,402
9 San Jose California 945,942
... …

130 ◾ LogiQL: A Query Language for Smart Databases

for this predicate and run the program. The expected output from query-
ing this predicate is as follows:

Querying extendedCitynameOf:
9, San Jose, California
8, San Diego, California
7, Los Angeles, California
6, Portland, Oregon
5, Portland, Maine
4, New York, New York
3, Columbus, Ohio
2, Columbus, Georgia
1, Cleveland, Ohio

Exercise 6B: Add a derivation rule to your solution for endsInLand(cn)
to determine each city name cn that ends in the characters "land".

Exercise 6C: Add code to your solution to derive the names of the cities
having the three highest populations.

UNIT 3.7: CONSOLIDATION EXERCISE 3
This exercise gives you a chance to test how well you have mastered the
new topics covered in this chapter. As much of the content of this chapter
has been theoretical and wide ranging, the questions are less integrated
than in previous chapters.

Q1: Explain what is wrong with the following code, and revise it to fix the
problem. The answer can be found in the file Q1Answer.logic.

Customer(c), customerNR(c:n) -> int(n).
Vehicle(v), vehicleVIN(v:n) -> string(n).
Accessory(a), accessorySerialNr(a:n) -> string(n).
purchased(c, v) -> Customer(c), Vehicle(v).
purchased(c, a) -> Customer(c), Accessory(a).

Q2: Given the following declarations, correctly classify each of the rules
below as safe or unsafe. The answers can be found in the file Q2Answer.
logic:

Person(p), hasPersonName(p:pn) -> string(pn).
Book(b), hasISBN(b:isbn) -> string(isbn).

Diving Deeper ◾ 131

smokes(p) -> Person(p).
isPairedWith(p1, p2) -> Person(p1), Person(p2).
isOdd(n) -> int(n).
isLonely(p) -> Person(p).

(a) isNonSmoker(p) <- !smokes(p).

(b) isOdd(n) <- n = 1 ; n = 3.

(c) isPairedWith(p1, p2) <- smokes(p1) ; smokes(p2).

(d) isPairedWith(p1, p2) <- smokes(p1), smokes(p2).

(e) isPairedWith(p1, p2) <- !smokes(p1), !smokes(p2).

(f) isLonely(p) <- Person(p), !isPairedWith(p, _).

Q3: The file ages.lb includes transactions to add the following schema,
execute the data shown, and query the ageOf and isaSenior predicates:

// Schema
Person(p), hasPersonName(p:pn) -> string(pn).
ageOf[p] = n -> Person(p), int(n).
isaSenior(p) -> Person(p).

// Data
+ageOf["Elvis"] = 42.
+ageOf["Terry"] = 64.
+ageOf["Walter"] = 90.
+ageOf["Xena"] = 90.
+isaSenior("Walter").
+isaSenior("Xena").
+isaSenior("Methuselah").

 (a) Write a delta rule to insert the fact that a person is a senior if a fact is
added or updated that the person has an age of at least 65. Test this by
writing other delta rules to insert the fact that Bertie is aged 97 and
to update Terry’s age to 65.

 (b) Starting again from ages.lb, write delta rules to retract the fact
that a person is a senior if that person’s age is changed to a value
below 65 or that person’s age is deleted. Test this by updating Xena’s
age to 30 and deleting Walter’s age fact.

 (c) Starting again from ages.lb, write a delta rule that will delete the
fact that a person exists if the fact for that person’s age is deleted. Test
this by writing another delta rule to delete Xena’s age fact.

132 ◾ LogiQL: A Query Language for Smart Databases

 (d) Suppose that instead of the delta rule approach used in (b), the follow-
ing derivation rule is used: isaSenior(p)<-ageOf(p)> = 65.
Discuss the advantages and disadvantages of this alternative
approach.

The answers can be found in the file Q3Answer.logic.

Q4: Devise a rule for computing the number of descendants of a British
monarch. You can make use of the schema provided in foo.lb and
the parenthood information in bar.lb. Hint: You will need to com-
bine aggregation and recursion. Normally LogiQL does not allow this
because of the danger of infinite loops. However, you can instruct the
compiler to allow you to do this by adding the following metarule to
your code:

la ng :compiler:disableWarning:AGGREGATE_RECURSION[]
= true.

Of course, you should be careful when doing this that your code is, in fact,
guaranteed to terminate. An answer can be found in Q4Answer.logic.

Q5: The table presented in Exercise 3.6.5 was used to illustrate aggrega-
tion functions for ordering data, stores name and population data for vari-
ous major cities in the United States. The files USCities5.logic and
USCitiesData.logic contain the schema and city population data
describing it that are used in the next several exercises. We wish to pro-
duce a report describing the population of each city. Here is an appropriate
predicate declaration:

populationStatementOf[c] = psc -> City(c), string(psc).

Provide an IDB rule to populate this predicate. Hint: The built-in type
conversion predicate int:string:convert[n]=s converts the value
of the integer expression n to a character string s. Your output should
look like the following:

Querying populationStatementOf:
9, The population of San Jose, California = 945942
8, The population of San Diego, California = 1307402
7, The population of Los Angeles, California = 3792621
6, The population of Portland, Oregon = 583776

Diving Deeper ◾ 133

5, The population of Portland, Maine = 66194
4, The population of New York, New York = 8175133
3, The population of Columbus, Ohio = 787033
2, The population of Columbus, Georgia = 189885
1, The population of Cleveland, Ohio = 396815

The answer can be found in the file Q5Answer.logic.

Q6: Use the max and min aggregation functions to extend the program
in USCities5.logic to derive the following: (a) the highest population;
(b) the lowest population; (c) the extended name of the city/cities with the
highest population; (d) for each state, the name of the city with the high-
est population for that state (based on the data supplied). The answers are
provided in the file Q6Answer.logic.

Q7: Extend the file USCities5.lb with code to derive the extended name
of the city with the seventh highest population (assuming no ties in the
population figures). The answer is provided in the file Q7Answer.logic.

Q8: Consider the following three rules, in which a given baseball player
has a batting average expressed in the property predicate hasAverage.
Also, players are considered heavy hitters if their batting averages are
greater than 0.300.

 (a) Installed derivation rule:

 heavyHitter(p) <- playerHasAverage[p] > .300.

 (b) Installed delta rule:

 +heavyHitter(b) <- +playerHasAverage[b] > .300.

 (c) Executed delta rule:

 +heavyHitter(b) <- playerHasAverage[b] > .300.

Provide a comment for each rule describing its behavior. Hint: Each of
the three has a different behavior. The answer can be found in the file
Q8Answer.logic.

134 ◾ LogiQL: A Query Language for Smart Databases

ANSWERS TO EXERCISES

Answer to Exercise 1A:
 Item(i), hasItemName(i:n) -> string(n).
 expenseOf[i] = e -> Item(i), decimal(e).
 Item(i) -> expenseOf[i] = _.
 // Each item has an expense.

 maxExpense[] = n -> decimal(n).
 maxE xpense[] = n <- agg<<n = max(e)>>

expenseOf[_] = e.
 // The maximum expense is the largest expense.

 isMostExpensive(i) -> Item(i).
 isMostExpensive(i) <- expenseOf[i] = maxExpense[].
 // Item is most expensive if it has the greatest
 // expense.

Result:

 /— - start of isMostExpensive facts— -\
Accommodation
Travel

 \— — end of isMostExpensive facts— — /

Answer to Exercise 1B:
 Claim(c), hasClaimNr(c:n) -> int(n).
 Item(i), hasItemName(i:n) -> string(n).
 cl ai mItemExpense[c, i] = e -> Claim(c), Item(i),

decimal(e).
 Claim(c) -> claimItemExpense[c, _] = _.
 // Each claim has an item with an expense.

 maxExpenseOf[c] = n -> Claim(c), decimal(n).
 ma xExpenseOf[c] = n <- agg<<n = max(e)>>

claimItemExpense[c, _] = e.
 // The maximum expense of claim c is the
 // the greatest single expense amount on claim c.

 hasMostExpensiveItem(c, i) -> Claim(c), Item(i).
 ha sM ostExpensiveItem(c, i) <- claimItemExpense[c, i] =

maxExpenseOf[c].
 // Claim c has most expensive item i if
 // t he expense of item i is the max expense on

claim c.

Diving Deeper ◾ 135

Result:

 /— - start of hasMostExpensiveItem facts— -\
 2, Travel
 1, Travel
 1, Accommodation
 \— — end of hasMostExpensiveItem facts— — /

Answer to Exercise 2A:

The derivation rule for isOff is unsafe because its head variable does not
occur in a positive context in the rule body. To fix the rule, modify it as
shown:

 isOff(l) <- Light(l), !isOn(l).
 // A light is off it is a light that is not on.

Answer to Exercise 2B:
 p(x, y, z) <- q(x), !r(y), z > 1.

The head variable y does not appear in a positive context in the body.
The head variable z does not appear in a positive context of a domain
predicate in the body:

 p(x, y, z) <- q(x), r(y), s(z) ; q(y), r(z).

The second disjunct includes only two of the three head variables.
Note that the and operator has priority over the or operator, so the

above disjunctive rule is equivalent to the following:

 p(x, y, z) <- (q(x), r(y), s(z)) ; (q(y), r(z)).

Answer to Exercise 3:
 hasFlightTo (Iteration 1):
 BNE, KUL
 BNE, BKK
 KUL, BKK
 BKK, LHR
 LHR, HEL

 hasFlightTo (Iteration 2):
 BNE, KUL
 BNE, BKK

136 ◾ LogiQL: A Query Language for Smart Databases

 KUL, BKK
 BKK, LHR
 LHR, HEL

 hasFlightTo (Iteration 3):
 BNE, KUL
 BNE, BKK
 KUL, BKK
 BKK, LHR
 LHR, HEL
 BNE, LHR
 KUL, LHR
 BKK, HEL

Answer to Exercise 4A:

The update may be done in a single step: thus,

^genderOf["Terry"] = "M".

Consider the alternative of first executing this retraction:

-genderOf["Terry"] = "F".

and later executing this assertion:

+genderOf["Terry"] = "M".

What goes wrong if you try this approach? Answer: During the period
between the retraction and the assertion, "Terry" will not have an
associated Gender. This violates the first constraint, that all Persons
have Genders.

Answer to Exercise 4B:
 +speaks(p, lang) <- +isFluentIn(p, lang).

After asserting that Norma is fluent in Spanish, a query of speaks
displays the following:

 Terry, English
 Norma, English
 Terry, Latin
 Terry, Japanese

Diving Deeper ◾ 137

 Norma, French
 Norma, Spanish

Answer to Exercise 4C:

Results of first query:

 Terry, English
 Norma, English
 Terry, Latin
 Terry, Japanese
 Norma, French

Result of second query:

 Terry, English
 Norma, English
 Terry, Latin

A predicate in LogiQL can either be an IDB predicate or an EDB predicate,
but not both. Note that in the IDB version two facts have disappeared.

In the next unit, we discuss how to write a cascading delta rule for
speaks to deal with retractions, while still preserving the subset con-
straint from fluency to speaking.

Answer to Exercise 5A:

The additional rule is shown below. A file to test the program with
 relevant updates is accessible as netWorth.lb:

 ̂status[] = "Big Changes Happening!!" <-
^netWorth[p] = _,
abs[netWorth[p] - netWorth@prev[p] /

netWorth@prev[p]] >= 2.

Answer to Exercise 5B:

isGrandparentOf is an IDB predicate; trying to directly assert a
fact into it, which is an EDB operation, raises an exception. That is,
a predicate cannot be part of both the IDB and the EDB.

One way to get around this limitation is to break the grandparent
relation into two parts, one for the IDB and one for the EDB:

 isGrandparentOfIDB(p1, p2) -> Person(p1), Person(p2).
 is Gr andparentOfIDB(p1, p2) <- isParentOf(p1, p3),

isParentOf(p3, p2).

138 ◾ LogiQL: A Query Language for Smart Databases

 isGrandparentOfEDB(p1, p2) -> Person(p1), Person(p2).
 is Gr andparentOfIDB(p1, p2) <-

isGrandparentOfEDB(p1, p2).

You can then add the new fact into the EDB predicate as follows:

 +isGrandparentOfEDB("Ivor", "Graham").

During the initial stage of the transaction, the isGrandparentOfEDB
fact is added. Then, during the final stage, the second isGrandpar-
entOfIDB rule fires, adding the new fact into the IDB predicate.

Answer to Exercise 5C:

The delta rules to deal with assertions are shown below. A file to test the
program with relevant updates is accessible as grandparent3.lb:

 +is Gr andparentOf(p1, p2) <- +isParentOf(p1, p3),
isParentOf(p3, p2).

 +is Gr andparentOf(p1, p2) <- isParentOf(p1, p3),
+isParentOf(p3, p2).

Note: If you wish grandparenthood facts to be deleted when parent-
hood facts that imply them are deleted, delta rules to cater for such fact
retractions are also needed. As the answer to the next question shows,
use of IDB rules is typically preferable to writing sets of delta rules for
such a case, since the maintenance of data updates is then managed for
you automatically.

Answer to Exercise 5D:

The program including IDB rules is shown below. A file to test the pro-
gram with relevant updates is accessible as grandparent5.lb:

Person(p), hasPersonName(p:pn) -> string(pn).
isParentOf(p1, p2) -> Person(p1), Person(p2).
as se rted_isGrandparentOf(p1, p2) -> Person(p1),

Person(p2).
de ri ved_isGrandparentOf(p1, p2) -> Person(p1),

Person(p2).
derived_isGrandparentOf(p1, p2) <-
isParentOf(p1, p3), isParentOf(p3, p2).
isGr andparentOf(p1, p2) -> Person(p1), Person(p2).

isGrandparentOf(p1, p2) <-

Diving Deeper ◾ 139

asserted_isGrandparentOf(p1, p2) ;
derived_isGrandparentOf(p1, p2).

Answer to Exercise 6A:

 extendedCitynameOf[c] = ecn -> City(c), string(ecn).
 exte ndedCitynameOf[c] = ecn <- stateOf[c] = s,

hasStateName(s:sn),
 ecn = cityNameOf[c] + ", " + sn.

The full program is accessible as USCities2.lb.

Answer to Exercise 6B:

 en ds InLand(cn) <- cityNameOf[_] = cn,
string:like(cn, "%land").

The relevant output is shown below. The full program is accessible as
USCities3.lb:

 Querying citynames ending in 'land':
Cleveland
Portland

Answer to Exercise 6C:

 population(i) -> int(i).
 population(i) <- populationOf[_] = i.

 populationOfRank[i] = pop -> int(i), int(pop).
 po pu lationOfRank[i] = pop <- seq<<i = pop>>

population(pop).

 numberOfCities[] = n -> int(n).
 numberOfCities[] = n <- agg<<n = count()>> City(_).

 threeMostPopulatedCities[i] = s -> int(i), string(s).
 threeMostPopulatedCities[i] = s <-

n = numberOfCities[],
j > = n - 3,
i = n - j,
populationOfRank[j] = pop,
populationOf[p] = pop,
cityNameOf[p] = s.

140 ◾ LogiQL: A Query Language for Smart Databases

The relevant output is shown below. The full program is accessible as
USCities4.lb.

 Querying threeMostPopulatedCities:
1 "New York"
2 "Los Angeles"

3 "San Diego".

