
35

C h a p t e r 2

Intermediate Aspects

CONTENTS
Unit 2.1: Inverse-Functional Predicates 36
Unit 2.2: n-ary Predicates 40
Unit 2.3: Inclusive-or and External Uniqueness Constraints 43
Unit 2.4: Subtyping and Subsetting 47

Subtypes 48
Subset Constraints 52

Unit 2.5: Recursive Rules and Ring Constraints 54
Recursion 54
Ring Constraints 57
Hard and Soft Constraints 59

Unit 2.6: The count and total Functions 60
Computing Counts 60
Dealing with Empty Predicates 62
Computing Totals and Averages 65

Unit 2.7: Consolidation Exercise 2 71
Part 1: Books 71
Part 2: Book Sales 72
Part 3: Personnel 73

Answers to Exercises 76
Answer to Exercise 1A 76
Answer to Exercise 1B 76
Answer to Exercise 2A 76
Answer to Exercise 2B 76
Answer to Exercise 2C 77
Answer to Exercise 2D 77
Answer to Exercise 3A 77

36 ◾ LogiQL: A Query Language for Smart Databases

This chapter builds on the basic concepts and syntax of LogiQL
 considered in the previous chapter and introduces some more

advanced features of the language. Although the British monarchy
remains the primary domain from which examples and exercises are con-
structed, we begin to introduce other, more business-oriented domains to
demonstrate the breadth of applicability of LogiQL.

The first unit considers inverse-functional predicates, which are binary
predicates where the first argument is a function of the second argument.
The second unit discusses predicates that have more than two arguments
and also surveys the various kinds of numeric datatypes available in
LogiQL. The next unit covers some constraints that apply to two or more
predicate arguments. We then learn how to use subtyping, where a type is
contained in a larger type (e.g., Woman is a subtype of Person), as well as
some simple subset constraints. The following unit then examines recur-
sion, one of LogiQL’s most powerful features, and discusses constraints
that often apply to predicates used in recursive rules. The final unit intro-
duces two of LogiQL’s aggregation functions (count and total), useful
for computing properties of a set of facts in the database. The consolida-
tion exercise gives you an opportunity to test your mastery of the new
concepts and syntax considered in the chapter.

UNIT 2.1: INVERSE-FUNCTIONAL PREDICATES
Table 2.1 repeats some details about British monarchs discussed in Chapter 1.
The Monarch, House, and Gender entity types were declared using the
unary predicates Monarch(m), House(h), and Gender(g), and the ref-
mode predicates hasMonarchName(m:s), hasHouseName(m:s), and
hasGenderCode(g:gc) were declared to provide a natural way to refer to
their instances. The facts about their given names, royal houses, and genders

Answer to Exercise 3B 77
Answer to Exercise 4A 78
Answer to Exercise 4B 78
Answer to Exercise 5A 79
Answer to Exercise 5B 79
Answer to Exercise 5C 80
Answer to Exercise 6A 80
Answer to Exercise 6B 80
Answer to Exercise 6C 81
Answer to Exercise 6D 81

Intermediate Aspects ◾ 37

were captured using the many-to-many predicate hasGivenName(m,gn),
and the many-to-one predicates houseOf[m]=h and genderOf[m]=g.

This unit concerns inverse-functional predicates. As an example, let’s
revisit our modeling of genders via gender codes. Suppose now that we wish
to also store gender names, as indicated in Table 2.2, so that these can be
displayed to users unfamiliar with the codes. This is a very simple example
of a two-column lookup table. Lookup tables are often used to store lists of
codes and/or names for countries, states, currencies, and so on.

Given our decision to standardly refer to genders by their codes, we
may verbalize the association between entries in the two columns:

The gender with gender code “F” has the gender name “Female.”

The gender with gender code “M” has the gender name “Male.”

To store these facts, we declare the genderNameOf predicate. Because
each gender has at most one name (i.e., gender name is a function of
 gender), we use LogiQL’s functional notation.

TABLE 2.1 Facts about British Monarchs

Monarch Given Names House Gender
Anne Anne Stuart F
George I George, Louis Hanover M
George II George, Augustus Hanover M
George III George, William, Frederick Hanover M
George IV George, Augustus, Frederick Hanover M
William IV William, Henry Hanover M
Victoria Alexandrina, Victoria Hanover F
Edward VII Albert, Edward Saxe-Coburg and Gotha M
George V George, Frederick, Ernest, Albert Windsor M
Edward VIII Edward, Albert, Christian,

George, Andrew, Patrick, David
Windsor M

George VI Albert, Frederick, Arthur, George Windsor M
Elizabeth II Elizabeth, Alexandra, Mary Windsor F

Note: M, male; F, female.

TABLE 2.2 Gender Codes and Names

Gender

Code Name
F Female
M Male

38 ◾ LogiQL: A Query Language for Smart Databases

genderNameOf[g] = gn -> Gender(g), string(gn).
// If g has gender name gn
// then g is a gender and gn is a string.
// Each gender has at most one gender name.

Note also that each gender name relates to at most one gender (i.e., gender
is a function of gender name). So the genderNameOf predicate is also
functional in the inverse direction (from right argument to left argument).
Hence, the genderNameOf predicate is said to be an inverse-functional
predicate. As there is no special notation for this in LogiQL, we declare
this inverse-functional constraint as follows:

gend erNameOf[g1] = gn, genderNameOf[g2] = gn ->
g1 = g2.

// F or each gender name, at most one gender has that
// gender name.

The binary predicate genderNameOf has two roles, one played by
 gender instances (e.g., g1) and one by gender name instances (gn).
The functional constraint that each gender occurs at most once in the
 population of the genderNameOf predicate is said to be a uniqueness
constraint on the gender role. In this case, it is a simple uniqueness
constraint because only one role is involved. Similarly, the inverse-
functional constraint that each gender name occurs at most once in
the population of the genderNameOf predicate is a simple unique-
ness constraint on the gender name role. Because the genderNameOf
predicate is both functional and inverse-functional, it is said to be a
one-to-one predicate.

An additional constraint is that the genderNameOf predicate is man-
datory for Gender, that is,

Gender(g) -> genderNameOf[g] = _.
// If g is a gender then it has some gender name.

A 1:1 relationship that is mandatory for all instances of its first argument
is said to be injective. Hence, the genderNameOf predicate is injective.
Refmode predicates are always understood to be injective in this sense,
so the colon used to separate arguments of refmode predicates constrains
them to be mandatory and 1:1. This colon syntax is used only for refmode
predicates, so if a non-refmode predicate is injective, this must be declared
explicitly, as shown above for genderNameOf.

Intermediate Aspects ◾ 39

Just as a 1:1 predicate can have an inverse, the inverse of a many-to-one
predicate is said to be a one-to-many predicate (or 1:n predicate). For
example, isMotherOf(p1,p2) is a 1:n predicate because a single person
may be the mother of many persons, even though each person has at most
one mother. Both 1:n and 1:1 predicates are inverse- functional predicates,
and a 1:1 predicate is also functional. If you declare a 1:n predicate, you
need to declare its uniqueness constraint separately. For example,

isMotherOf(p1, p2) -> Person(p1), Person(p2).
// If p1 is mother of p2, then p1 and p2 are persons.

isMotherOf(p1, p), isMotherOf(p2, p) -> p1 = p2.
// Each person has at most one mother.

Note that if you have a 1:n predicate, in most cases, it’s better to replace it
by its inverse, which you can declare as an n:1 predicate simply by using
the functional notation. For example,

motherOf[p1] = p2 -> Person(p1), Person(p2).
// If p1 has mother p2, then p1 and p2 are persons.
// Each person has at most one mother.

Table 2.3 summarizes the four kinds of binary predicates we have dis-
cussed. Each type of predicate relates instances of the first argument role
with instances of the second argument role. The rows in the Table 2.3
indicate how many instances of the first argument may be related to a
number of instances of the second type. For example, an n:1 predicate
may contain multiple (n) facts with different instances of the first argu-
ment pertaining to a single (1) instance of the second argument. For
the motherOf predicate, multiple children (p1) may have the same
mother (p2).

TABLE 2.3 Types of Predicate Cardinalities

Predicate Type Example Functional
Inverse-Functional
Constraint Needed

m:n hasGivenName(p,gn) No No
n:1 motherOf[p1] = p2 Yes No
1:1 genderNameOf[g] = gn Yes Yes
1:n isMotherOf(p1,p2) No Yes

40 ◾ LogiQL: A Query Language for Smart Databases

Tip: If you have a 1:n predicate, consider replacing it by, or deriving it
from, its inverse n:1 predicate.

Exercise 1A: Declare the predicate isFatherOf over person pairs and
constrain it to be inverse-functional.

Exercise 1B: Declare the functional predicate fatherOf, as well as a rule
to derive isFatherOf from it.

UNIT 2.2: N-ARY PREDICATES
Consider Table 2.4 as discussed in Chapter 1. Earlier, we modeled the rela-
tionship between monarchs and their given names with the m:n predi-
cate hasGivenName(m,gn). This is fine, so long as we are not interested
in recording the order of a monarch’s given names. Now suppose we are
interested in this order (e.g., we want to know that George I had “George”
as his first given name and “Louis” as his second given name). How would
you express this?

One way to model this requirement is to use multiple given name predi-
cates, one for each position (Table 2.4), for example,

firstGivenNameOf[m] = gn
secondGivenNameOf[m] = gn
thirdGivenNameOf[m] = gn
…

TABLE 2.4 Given Names for British Monarchs

Monarch Given Names
Anne Anne
George I George, Louis
George II George, Augustus
George III George, William, Frederick
George IV George, Augustus, Frederick
William IV William, Henry
Victoria Alexandrina, Victoria
Edward VII Albert, Edward
George V George, Frederick, Ernest, Albert
Edward VIII Edward, Albert, Christian, George, Andrew, Patrick, David
George VI Albert, Frederick, Arthur, George
Elizabeth II Elizabeth, Alexandra, Mary

Intermediate Aspects ◾ 41

This is reasonable if a monarch may have just a few given names. However,
Edward VIII (the only British monarch so far to abdicate) had seven
given names. Because of this large number and the problem of setting a
limit on how many given names a monarch may be assigned, it’s far better
to use a predicate that includes a position to indicate the place of the given
name. For example, we could verbalize the facts about George I’s given
names informally; thus,

George I, in position 1, has the given name “George.”

George I, in position 2, has the given name “Louis.”

To indicate the position, we use the LogiQL integer (abbreviated as “int”)
primitive datatype. It is specified in the form int(p), where p is the
name of the variable holding the position. Hence, we can now declare the
 relevant predicate as shown in the following code:

inPo sitionHasGivenName[m, n] = gn -> Monarch(m),
int(n), string(gn).

/* If m in position n has given name gn, then m is a
monarch, n is an 8 bit unsigned integer, and gn is
a string. For each monarch and position, there is
at most one given name. */

The inPositionHasGivenName predicate has three arguments (two
within the square brackets and one to the right of the equals sign), so it
is an example of a ternary predicate. In general, if a predicate has n argu-
ments, and n > 2, we call it an n-ary predicate.

Note the use of the functional notation, with the variables m and n in
square brackets, to express the compound uniqueness constraint that for
a given monarch and position in the monarch’s given name list there is at
most one given name. That is, the combination of monarch and position
functionally determines the given name. Analogous to the notion of
 primary key in a relational database table, the arguments in square brackets
comprise the keyspace of the functional predicate (or compound key). For a
predicate that is not functional (e.g., a many-to-many predicate), the collec-
tion of all of its arguments also comprise a keyspace, since each instance in
the population of the predicate is unique. Such predicates are called all-key.

To ensure that given name positions start at 1 rather than 0, we can
declare the following value constraint on the position argument. Notice
the use of anonymous variables for the other arguments.

42 ◾ LogiQL: A Query Language for Smart Databases

inPositionHasGivenName[_, n] = _ -> n > 0.
// If something in position n has some given name
// then n is greater than 0.

Note that in this example, there were two uses of anonymous variables—
one for monarchs and one for given names. Be aware that even though the
same symbol (‘ _ ’) was used for both, these represent different variables.

If you look at the table of monarch names, you should see that there is
another uniqueness constraint on this ternary predicate. For each monarch,
each given name occurs in at most one position. For example, no monarch
would be given the names “George, George.” This compound uniqueness
constraint needs to be declared separately, because the functional syntax
can be used for only one choice of keyspace. The unit exercise challenges
you to code this constraint in LogiQL.

Just as a binary predicate may be m:n and hence all-key, it is possible
that an n-ary predicate is all-key. Here is an example of a many-to-many-
to-many, ternary predicate taken from a business domain—keeping track
of retail products. In the example, we declare the following predicate to
record what products are available at what stores in what seasons:

prod uctAvailability(p, st, se) -> Product(p),
Store(st), Season(se).

/* If p is available for st during se, then p is a
product, st is a store and s is a season. */

The keyspace of an n-ary functional predicate typically has n–1 arguments,
with the final argument being a function of the previous arguments. As an
example of a functional predicate to record the number of units sold
for a given product in a given store in a given season, we might declare
the following predicate (assuming Product, Store, and Season
are also declared):

productStoreSeasonUnitsSold[p, st, se] = nrSold ->
 Product(p), Store(st), Season(se), int(nrSold).
// If p is sold in st during se in amount nrSold, then
// p is a product, st is a store, se is a season, and
// nrSold is an int.

Typically, any asserted predicate should be atomic (i.e., not equiva-
lent to a conjunction of smaller predicates). For this reason, it is rare to

Intermediate Aspects ◾ 43

use predicates with more than five arguments. By restricting asserted
 predicates to be atomic, we capture the information as simply as possible,
avoid the need to deal with missing or inapplicable values, and facilitate
subsequent changes to the model.

Tip: Make sure that your asserted predicates are all atomic.

Exercise 2A: Modify the value constraint given above for positions in
given name lists (inPositionHasGivenName) to ensure that each
position number is in the range 1..9 (i.e., at least 1 and at most 9).

Exercise 2B: Code the constraint that for each monarch, each given name
occurs in at most one position.

Exercise 2C: Write a derivation rule, sharesGivenName(m1, m2), that
derives pairs of Monarchs that share a given name.

Exercise 2D: Your solution to Exercise 2C likely listed both the pair
("George I", "George II") and the pair ("George II",
"George I"). Write another rule, sharesGivenName2(m1,m2), that
derives pairs of Monarchs that share a given name without including
this form of redundancy. Hint: Only include a Monarch pair if the mon-
arch name of the first monarch is alphabetically less than the monarch
name of the second.

UNIT 2.3: INCLUSIVE-OR AND EXTERNAL
UNIQUENESS CONSTRAINTS

A previous unit considered the genders of the British monarchs as pre-
sented in Table 2.5, where the gender codes “M” and “F” denote male and
female genders. The following code shows the way we model this infor-
mation in LogiQL, using a binary, functional genderOf predicate.
We include a value constraint to limit the possible gender codes and a
simple mandatory constraint to ensure that each monarch has a gender:

Monarch(m), hasMonarchName(m:n) -> string(n).
Gender(g), hasGenderCode(g:gc) -> string(gc).
genderOf[m] = g -> Monarch(m), Gender(g).
genderOf[_] = g -> g = "M" ; g = "F".
Monarch(m) -> genderOf[m] = _.

44 ◾ LogiQL: A Query Language for Smart Databases

As an alternative way to model the information, we briefly considered
using the unary isMale and isFemale predicates:

Monarch(m), hasMonarchName(m:n) -> string(n).
isMale(m) -> Monarch(m).
isFemale(m) -> Monarch(m).
isMale(m) -> !isFemale(m).
// No monarch is both male and female.

The exclusion constraint on the fourth line captures the functional nature
of the genderOf predicate (each monarch has at most one gender), but
to ensure that each monarch has a gender, we need to add the following
inclusive-or constraint that each monarch is either male or female:

Monarch(m) -> isMale(m) ; isFemale(m).
// Each monarch is either male or female.

In this example, the isMale and isFemale disjuncts are also mutually
exclusive. The combination of the inclusive-or and exclusion constraints is
known as an exclusive-or constraint. Unlike Latin, LogiQL does not have
two varieties of the or operator, one inclusive and one exclusive. So you
need to code an exclusive-or constraint as two constraints, one for the
inclusive-or aspect and one for the exclusive aspect, as done above.

In the second approach just described, the isMale and isFemale
predicates were asserted, not derived. In this case, any constraints on

TABLE 2.5 Genders of British Monarchs

Monarch Gender
Anne F
George I M
George II M
George III M
George IV M
William IV M
Victoria F
Edward VII M
George V M
Edward VIII M
George VI M
Elizabeth II F

Note: M, male; F, female.

Intermediate Aspects ◾ 45

the predicates need to be explicitly declared. However, suppose that in
 addition to using the genderOf predicate to assert the gender facts, we
also derive the isMale and isFemale predicates, using the following
derivation rules:

isMale(m) <- genderOf[m] = "M".
isFemale(m) <- genderOf[m] = "F".

In this case, there is no need to assert the inclusive-or and exclusion
 constraints on the isMale and isFemale predicates, because these con-
straints are implied by the constraints declared for the genderOf predicate.

Inclusive-or constraints may apply to two or more roles of predicates
of any arity, so long as the roles are played by instances of compatible
types. For example, suppose that in our business domain, each product
p included in a sale must satisfy at least one of the following requirements:
p is a discontinued product; p is a loss leader; or p was nominated by a
 marketing analyst. Assuming SaleProduct and MarketingAnalyst
are already declared, we could code this situation as follows:

isDiscontinued(p) -> SaleProduct(p).
isLossLeader(p) -> SaleProduct(p).
wasN ominatedBy[p] = m -> SaleProduct(p),

MarketingAnalyst(m).
SaleProduct(p) ->
 isDiscontinued(p) ; isLossLeader(p) ;

wasNominatedBy[p] = _.
// Each sale product is discontinued or is a loss
// leader or was nominated by a marketing analyst.

For simplicity, the only products of interest in this example are sales
products.

Now consider Table 2.6, an extract from a table used by a particular
business to record the major cities where the company has offices. In this
business domain, cities are primarily identified by city numbers, since
these provide a simple, rigid identifier that remains valid even if the
city changes its name (e.g., consider Constantinople and St. Petersburg).
States are identified using state codes (e.g., “ME” for Maine and “OR” for
Oregon). Since many users of the information system might not know the
city numbers, the combination of city name and state provides an alterna-
tive reference scheme to enable them to easily refer to the cities.

46 ◾ LogiQL: A Query Language for Smart Databases

The basic structure (schema) and data for this example may be coded as
shown below, using techniques already discussed:

// Schema
City(c), hasCityNr(c:n) -> int(n).
State(s), hasStateCode(s:sc) -> string(sc).
cityNameOf[c] = cn -> City(c), string(cn).
stateOf[c] = s -> City(c), State(s).
City(c) -> cityNameOf[c] = _.
City(c) -> stateOf[c] = _.

// Data
+cityNameOf[1] = "Portland", +stateOf[1] = "ME".
+cityNameOf[2] = "Portland", +stateOf[2] = "OR".
+cityNameOf[3] = "Eugene", +stateOf[3] = "OR".

What is missing from this code is a constraint to ensure that each
 combination of city name and state refers to only one city. This constraint
may be coded as follows:

cityNameOf[c1] = cn, stateOf[c1] = s,
 cityNameOf[c2] = cn, stateOf[c2] = s ->
 c1 = c2.
// Each combination of city name and state refers to
// at most one city.

This is called an external uniqueness constraint, since the uniqueness
applies to roles from multiple predicates rather than being internal to a
single predicate. As a check that the constraint is enforced, if you try to exe-
cute the following fact assertions on the above schema, you will get a run-
time error indicating that a constraint has been violated:

+cityNameOf[4] = "Seattle", +state[4] = "WA". // Error!
+cityNameOf[5] = "Seattle", +state[5] = "WA". // Error!

TABLE 2.6 Locations of Company Offices

City Number City Name State
1 Portland Maine
2 Portland Oregon
3 Eugene Oregon
… … …

Intermediate Aspects ◾ 47

Constraint violation errors are detected only after the compiler has checked
that there are no syntax errors, such as writing "stateOf(c1) = s" in
the program code or omitting the “+” in a data assertion.

Tip: Add relevant constraints to predicates to prevent them being popu-
lated with data that is inconsistent with the application domain.

Exercise 3A: A given company identifies its employees by employee
 numbers but also requires each employee to have either an identifying
Social Security Number or an identifying passport number. Express
this situation in LogiQL, using strings to store the identifying numbers.

Exercise 3B: The neighborhoods in which a company has stores are
 identified by (single-character) names. Each store can also be referenced by
the combination of its x and y map coordinates, as shown in Figure 2.1.
Express this situation in LogiQL using integers for the coordinates, and
issue a query to list the label and coordinates of each store.

UNIT 2.4: SUBTYPING AND SUBSETTING
Types are an important concept in most programming languages, and
LogiQL is no exception. The built-in (primitive) datatypes include boolean,
numbers of various sorts (int, float, and decimal), string, and
datetime. In addition, as described in Chapter 1, programmers can
declare their own entity types. This unit discusses an additional, powerful
feature of types called subtyping. Subtyping is a way of indicating that a
set of the entities of one type, the subtype, must be a subset of the entities
of another type, the supertype. To illustrate the possibilities, we consider
King and Queen as subtypes of Monarch in the British royalty as pre-
sented in Table 2.7.

A(2, 3)

B(1, 1) C(4, 1)

X-Axis
Y-

A
xi

s

FIGURE 2.1 Company location grid.

48 ◾ LogiQL: A Query Language for Smart Databases

Subtypes

Table 2.7 lists the British monarchs, indicating the kings and queens by
a check mark (✓) in the relevant column. For now, let us assume that the
genderOf predicate discussed in earlier units is not declared. If we wish
to think of kings and queens as entities, we may declare the entity types
King and Queen as follows:

Monarch(m), hasMonarchName(m:n) -> string(n).
King(m) -> Monarch(m).
// If m is a king, then m is a monarch.
lang:isEntity[`King] = true.
// King is an entity type.
Queen(m) -> Monarch(m).
// If m is a queen, then m is a monarch.
lang:isEntity[`Queen] = true.
// Queen is an entity type.

Here, the constraints indicate that each king and queen is also a monarch,
making King and Queen subtypes of Monarch. Equivalently, Monarch
is a supertype of King and Queen. The metapredicate lang:isEntity
is used to declare that the predicate in parentheses after the grave accent
character (‘̀ ’) is an entity predicate.

The King and Queen subtypes inherit the properties of their
 supertype Monarch, including its refmode identification scheme.

TABLE 2.7 Another Representation of
Monarch Genders

Monarch King Queen
Anne ✓
George I ✓
George II ✓
George III ✓
George IV ✓
William IV ✓
Victoria ✓
Edward VII ✓
George V ✓
Edward VIII ✓
George VI ✓
Elizabeth II ✓

Intermediate Aspects ◾ 49

For example, we may assert that Anne is a queen and that George I is a
king as follows:

+Queen("Anne"), +King("George I").

Because of the declarations for King and Queen, the compiler is
able to infer that Anne and George I are also monarchs—that is,
Monarch("Anne") and Monarch("George I"). There is no need to
include +Monarch("Anne") and +Monarch("George I") assertions.
Here, King and Queen are said to be asserted subtypes because we simply
assert their instances rather than derive them from other facts.

To complete the example, we should add the following constraints
to ensure that King and Queen form a partition (disjoint union) of
Monarch:

Monarch(m) -> King(m) ; Queen(m).
// Each monarch is a king or a queen.
King(m) -> !Queen(m).
// No king is a queen.

Because they have not been declared supertypes of other types, King
and Queen are said to be leaf subtypes. Leaf predicates without
lang:isEntity declarations are treated as simple property predi-
cates rather than entity predicates. In such situations, if you really do
not want to think of them as entity predicates, it’s better to name the
predicates using verb phrases (e.g., isaKing, isaQueen) rather than
noun phrases.

Now suppose that instead of the above approach of asserting subtype
entities, we chose to explicitly indicate the gender of each monarch using
the genderOf predicate and to define kings and queens in terms of their
gender. Table 2.8 and the code that follows it represent this new situation.

Monarch(m), hasMonarchName(m:n) -> string(n).
Gender(g), hasGenderCode(g:gc) -> string(gc).
genderOf[m] = g -> Monarch(m), Gender(g).
Monarch(m) -> genderOf[m] = _.
hasGenderCode(_:gc) -> gc = "M" ; gc = "F".
King(m) -> Monarch(m).
King(m) <- genderOf[m] = "M".
Queen(m) -> Monarch(m).
Queen(m) <- genderOf[m] = "F".

50 ◾ LogiQL: A Query Language for Smart Databases

In this case, you might expect King and Queen to be subtype enti-
ties that had been derived from Monarch. However, the absence of the
lang:isEntity declarations for King and Queen requires LogiQL to
treat them as property predicates rather than entity predicates (which we
should really have emphasized by beginning their names with lowercase
letters). Moreover, note that there is no need to declare the inclusive-or and
exclusion constraints used above to ensure that King and Queen parti-
tion Monarch, because the King and Queen predicates are derived, and
these partition constraints are implied by the functional, mandatory, and
value constraints on the predicates used to define them.

Alternatively, if you explicitly declare the types of the King and Queen
predicates, then you may declare them to be entity predicates as shown
below. In this case, King and Queen may be properly viewed as derived
subtypes because their instances are determined using rules rather than
being simply asserted:

Monarch(m), hasMonarchName(m:n) -> string(n).
Gender(g), hasGenderCode(g:gc) -> string(gc).
genderOf[m] = g -> Monarch(m), Gender(g).
Monarch(m) -> genderOf[m] = _.
hasGenderCode(_:gc) -> gc = "M" ; gc = "F".
King(m) -> Monarch(m). // Type declaration
 lang:isEntity[`King] = true.
King(m) <- genderOf[m] = "M".

TABLE 2.8 Combined Gender Presentation

Monarch Gender King Queen
Anne F ✓
George I M ✓
George II M ✓
George III M ✓
George IV M ✓
William IV M ✓
Victoria F ✓
Edward VII M ✓
George V M ✓
Edward VIII M ✓
George VI M ✓
Elizabeth II F ✓

Note: M, male; F, female.

Intermediate Aspects ◾ 51

Queen(m) -> Monarch(m). // Type declaration
lang:entity[`Queen] = true.
Queen(m) <- genderOf[m] = "F".

The above derivation rules for the King and Queen predicates are trivially
based purely on gender because in our current application domain the only
people are monarchs. Suppose we now expand our universe of discourse to
include any royal family member of interest, where each can be identified
by a “royal name” such as “Elizabeth II” or “Prince William.” Even though,
historically, there has been more than one royal family member named
“Prince William,” let us assume there is only one of these of interest in our
domain, in this case, the Prince William of Wales born in 1982.

We could now record the gender of each royalty, assert who are mon-
archs, and derive who is a king and who is a queen using the following
schema. Here we use royalty in the singular sense, and use the variable p
in the sense of person:

Royalty(p), hasRoyalName(p:n) -> string(n).
Gender(g), hasGenderCode(g:gc) -> string(gc).
genderOf[p] = g -> Royalty(p), Gender(g).
Royalty(p) -> genderOf[p] = _.
hasGenderCode(_:gc) -> gc = "M" ; gc = "F".
Monarch(p) -> Royalty(p). // Asserted subtype
King(p) -> Monarch(p).
lang:isEntity[`King] = true.
King(p) <- Monarch(p), genderOf[p] = "M".
// Derived subtype
Queen(p) -> Monarch(p).
lang:isEntity[`Queen] = true.
Queen(p) <- Monarch(p), genderOf[p] = "F".
// Derived subtype

In this code, Monarch is an asserted subtype of Royalty, while King and
Queen are derived subtypes of Monarch. Because subtyping is transitive,
this means that King and Queen are also (indirect) subtypes of Royalty.
If you run this program with the following data, the compiler will infer that
Anne is a queen, George I is a king, and all three persons are royalty:

+genderOf["Anne"] = "F", +Monarch("Anne").
+genderOf["George I"] = "M", +Monarch("George I").
+genderOf["Prince William"] = "M".

52 ◾ LogiQL: A Query Language for Smart Databases

Note that we did not bother declaring that Monarch is an entity predicate,
because Monarch is no longer a leaf subtype. The compiler is able to infer
that Monarch is an entity predicate because it appears on the right-hand
side of the type declaration for King (or Queen), which have themselves
been explicitly declared to be entity types. Nevertheless, because King
and Queen are leaf subtypes, explicit entity declarations are required.

The subtyping examples discussed so far are all examples of single
inheritance, where each subtype has at most one direct supertype. If a
subtype has more than one direct supertype, this is called multiple inher-
itance. For example, we might define Queen and DeadMonarch as sepa-
rate but overlapping subtypes of Monarch, and define DeadQueen as a
subtype of both Queen and DeadMonarch. Be aware that LogiQL does
not properly support multiple inheritance, and you can easily generate
inconsistent results if you try to use it.

Subset Constraints

Subtyping constrains one entity type to be a subtype of another. Similarly,
for property predicates, we can constrain the population of one prop-
erty predicate to always be a subset of the population of another property
predicate. This is known as a subset constraint. As a simple example of a
subset constraint between two property predicates, consider the following
code. Here hasGardenCenter and sellsLawnMowers are property
predicates of the Store entity type. The final line of code, just above the
comment, declares a subset constraint from the hasGardenCenter
predicate to the sellsLawnMowers predicate:

Store(s), hasStoreNr(s:n) -> int(n).
hasGardenCenter(s) -> Store(s).
sellsLawnMowers(s) -> Store(s)
 hasGardenCenter(s) -> sellsLawnMowers(s).
// If store s has a garden center, then s sells lawn
// mowers.

Here is another example, this time of a subset constraint between role
pairs (the s and p arguments of purchased and storeProductNr-
Sold), to ensure that stores sell only those products that they have already
purchased:

Store(s), hasStoreNr(s:n) -> int(n).
Product(p), hasProductCode(p:pc) -> string(pc).

Intermediate Aspects ◾ 53

purchased(s, p) -> Store(s), Product(p).
stor eProductNrSold[s, p] = n -> Store(s), Product(p),

int(n).
storeProductNrSold[s, p] = _ -> purchased(s, p).
// If store s sold product p in some quantity
// then store s purchased that product p.

Tip: Use a noun phrase to name an entity predicate, and use a verb phrase
to name a unary property predicate.

Tip: If a leaf subtype is intended to be an entity type, declare this explicitly
using a lang:isEntity declaration.

Tip: Avoid multiple inheritance.

Tip: Although the LogiQL subtyping mechanism enables you to define new
entity types, it does not allow you to define subtypes of primitive types,
such as defining a type of string comprising the names of the months. To
do this, you should use subset constraints instead.

Exercise 4A: The following program is used to record information about
companies. Some companies (dealers) sell products, while others provide
services. Extend the program to include derived subtypes for Dealer
(companies that sell products), NonDealer (all other companies), and
IPhoneDealer (companies that sell iPhones). Then install the program,
execute the data, and query the Store, Dealer, NonDealer, and
IPhoneDealer predicates:

// Schema
Company(c), hasCompanyName(c:n) -> string(n).
Product(p), hasProductName(p:n) -> string(n).
carries(c, p) -> Company(s), Product(p).

// Data
+Company("Target"), +Company("KMart"),
+Company("Sears").
+carries("Target", "Blackberry").
+carries("Sears", "IPhone").

54 ◾ LogiQL: A Query Language for Smart Databases

Exercise 4B: Extend the following program with a subset constraint to
ensure that bookstores own the coffee shop(s) that they provide:

BookStore(s), hasStoreName(s:n) -> string(n).
CoffeeShop(c), hasShopName(c:n) -> string(n).
provides(s, c) -> BookStore(s), CoffeeShop(c).
owns(s, c) -> BookStore(s), CoffeeShop(c).

UNIT 2.5: RECURSIVE RULES AND RING CONSTRAINTS
In Chapter 1, the isGrandparentOf predicate was introduced to
express the grandparenthood relationship between monarchs in terms of
the parenthood relationship. We could have also defined other variants,
such as isGreatGrandparentOf. What we could not have done with
the concepts available at that time was define the more general relationship
of ancestry.

Recursion

The problem is that if one person is an ancestor of another there may be
any number of intermediate parents. Expressing this imprecision requires
the more powerful notion of recursion. Roughly speaking, recursion is
the use of a concept in its own definition. In LogiQL, recursion can be
used in derivation rules and constraints.

For generality, we will now consider people other than monarchs,
so that ancestorhood is a many-to-many relationship between two per-
sons. Let’s see how we could specify an isAncestorOf derivation
rule using recursion. If we were to verbalize the rule, we might say the
following:

Person p1 is an ancestor of person p2 if either p1 is a parent of p2 or
p1 is a parent of some ancestor of p2.

Note the two uses of “ancestor” in the above definition. The first gives the
term being defined, while the second is part of the definition.

The use of “or” in the above description indicates that the corresponding
derivation rule is disjunctive. A disjunctive rule can be expressed directly
using the or operator (‘;’), or it can be replaced by multiple non-disjunctive
rules, one for each disjunct. Let’s use the latter approach. The first disjunct
in the above ancestor rule can be expressed by a non-recursive rule as

Intermediate Aspects ◾ 55

follows, assuming that the isParentOf m:n predicate is defined between
two monarchs:

isAncestorOf(p1, p2) <- isParentOf(p1, p2).
// If p1 is a parent of p2 then p1 is an ancestor of p2.

The second part is nearly as simple once you realize that you can use
isAncestorOf on the right-hand side:

isAn cestorOf(p1, p2) <- isParentOf(p1, p3),
isAncestorOf(p3, p2).

// If p1 is a parent of some p3 and p3 is an ancestor
// of p2 then p1 is an ancestor of p2.

The isAncestorOf predicate was defined in two parts, which is typical
of recursive definitions. The first rule, known as a basis clause, deals with
the ground case where there is no recursion—that is, where ancestorhood
is simply parenthood. The second rule, known as a recursive clause, derives
an ancestorhood fact from a parenthood fact and an ancestorhood deriva-
tion that is one step shorter. Repeated applications of this rule eventually
spiral into a case where only one step is left, and this case is satisfied by
the basis clause.

Any derivation rule that includes the same predicate in both the head
and body of the rule is a recursive rule. Recursion is a powerful capabil-
ity, and the elegant and efficient way in which LogiQL supports recursion
is one of its most attractive features. In general, when you have a predicate,
such as isParentOf, that you wish to apply an indefinite number of times
to compute a new predicate (isAncestorOf), you should use recursion.
Such situations compute what is called the transitive closure of the origi-
nal predicate, and rules to compute transitive closures are needed in many
applications.

Recursion can also be applied to constraints. We will use the genealogy
graph for the current Prince George going back through four generations
to illustrate several constraints, including one that is recursive, as shown
in Figure 2.2.

In Figure 2.2, each node in the graph denotes a person, using rectangles
for males and rounded rectangles for females. Line segments that con-
nect nodes represent biological parenthood relationships, read from left to
right. For example, Prince Charles and Princess Diana are the parents of
Princes William and Harry.

56 ◾ LogiQL: A Query Language for Smart Databases

Treating each of the royalty simply as a person and their identifiers in
the graph nodes as person names, we may use the following basic schema
to encode the gender and parenthood facts. Because a person may have up
to two parents listed, and some have more than one child, the parenthood
predicate is many-to-many:

Person(p), hasPersonName(p:n) -> string(n).
Gender(g), hasGenderCode(g:gc) -> string(gc).

Prince
Andrew

Prince
Charles

Prince
William

Prince Phillip

Queen
Elizabeth II

John Spencer

Frances Kydd

Peter
Middleton

Valerie
Glassborow

Ronald
Goldsmith

Dorothy
Harrison

Carole
Goldsmith

Michael
Middleton

Princess
Diana

Kate
Middleton

Prince
George

Princess Alice

George VI

Elizabeth
Bowes-Lyon

Albert
Spencer

Cynthia
Hamilton

Edmond
Roche

Ruth Gill

Richard
Middleton

Olive Lupton

Frederick
Glassborow

Constance
Robinson

Stephen
Goldsmith

Edith Chadler

�omas
Harrison

Elizabeth
Temple

FIGURE 2.2 Genealogy for Prince George.

Intermediate Aspects ◾ 57

genderOf[p] = g -> Person(p), Gender(g).
isParentOf(p1, p2) -> Person(p1), Person(p2).
Person(p) -> genderOf[p] = _.
hasGenderCode(_:gc) -> gc = "M" ; gc = "F".

Ring Constraints

Notice that both arguments of the isParentOf predicate are of type
Person. A binary predicate whose arguments are of the same type is
called a ring predicate. Typically, ring predicates need to be constrained
in various ways to prevent them being populated with bad data. For exam-
ple, we should constrain the parenthood predicate to be irreflexive (i.e.,
no instance may participate in the relationship with itself) by adding the
following constraint:

!isParentOf(p, p).
// No person is a parent of his/her self.
// Note that there is no head nor arrow on this
// constraint.

If you add this constraint to the above program, compile it, and try to
assert the following data, you will get an error because the second line of
data violates the above irreflexive constraint:

+genderOf["George V"] = "M".
+isParentOf("George V", "George V"). // Error!

The file containing the correct data for the figure is available as
PrincesData.logic.

Logical constraints on two type-compatible arguments of a predicate
are called ring constraints. An irreflexive constraint is just one of many
kinds of ring constraint. We now discuss some other varieties of ring
constraints.

A ring predicate is asymmetric if it works in one direction only. For
example, the isParentOf predicate is asymmetric, and we can constrain
it to be so by adding the following asymmetry constraint:

isParentOf(p1, p2) -> !isParentOf(p2, p1).
// If p1 is a parent of p2, then p2 cannot be a parent
// of p1.

58 ◾ LogiQL: A Query Language for Smart Databases

For example, if you try to assert that George V is a parent of George VI
and also assert that George VI is a parent of George V, you will violate this
constraint. If a predicate is asymmetric, it must be irreflexive, so if you
include the asymmetric constraint above, there is no need to include the
irreflexive constraint given above.

A ring predicate R is intransitive if and only if, given any x, y,
and z, if R(x, y) and R(y, z) are true, then R(x, z) must be false.
Assuming no incest, the parenthood relationship is intransitive, and
we may constrain it to be so by adding the following intransitive
constraint:

isPa rentOf(p1, p2), isParentOf(p2, p3) ->
!isParentOf(p1, p3).

// If p1 is a parent of p2, and p2 is a parent of p3
// then p1 cannot be a parent of p3.

Note that if a binary predicate is both functional and irreflexive, it must
be intransitive.

A ring predicate R is acyclic if and only if no object may cycle back to
itself by one or more applications of R. Ignoring the possibility of reincar-
nation, the parenthood relationship is acyclic. Since there is no restriction
on how many times the R predicate is applied, we need to use recursion to
express an acyclic constraint.

To ensure that a ring predicate R is acyclic, we first recursively derive a
predicate T that captures all pairs of arguments resulting from one or more
applications of R. That is, T is the transitive closure of R. We then constrain
T to be irreflexive. With our current example, R is the isParentOf
 predicate, and T is the isAncestorOf predicate. Hence, we can specify
the acyclic constraint on parenthood by constraining ancestorhood to be
irreflexive as follows:

!isAncestorOf(p, p).
// No person is an ancestor of himself/herself.

If you look back at Figure 2.2, you should be able to see that this prevents
any cycles appearing in the graph of parenthood facts (i.e., parenthood is
acyclic).

Note that acyclicity implies asymmetry. So if you constrain a predi-
cate to be acyclic there is no need to also declare it to be asymmetric
(or irreflexive).

Intermediate Aspects ◾ 59

Hard and Soft Constraints

LogiQL constraints are checked at runtime when new data is added to the
workspace, either by fact assertion or by derivation from a rule. If a con-
straint is violated, program execution is stopped, and an error reported to
the user. For many types of constraints, this is exactly the behavior that we
want. For example, if two facts are asserted, one stating that Queen Anne
is a female and one that she is a male, we want to be told immediately, so
we can correct the data. Such constraints are called hard constraints and
indicate what conditions must necessarily hold for the application domain.

Sometimes, however, there are constraints that could be violated in the
domain of interest, even though they ought to be obeyed. For example,
the above intransitive constraint on parenthood could be violated if
incest occurs. These are examples of soft constraints. Ideally, we would
like violations of soft constraints to be handled differently from how hard
 constraints are handled. In particular, our programs should be able to
detect them, take appropriate action, such as issuing a warning message,
and continue processing. Unfortunately, LogiQL does not support
this capability. Instead, if we know that parenthood is intransitive in
the domain being modeled (as in this royal ancestry domain), then it may
be declared as a hard constraint.

Tip: If a predicate has two arguments of the same type, consider which
ring constraints apply to it.

Exercise 5A: The ancestry program discussed is accessible as the file
Ancestry.logic, and the ancestral data depicted in Figure 2.2 is
 accessible as the file PrincesData.logic. Compile the program,
 execute the data file, and then issue a query to list all the ancestors of
Prince William.

Exercise 5B: A typical business application of recursion is a
 bill-of- materials report. The following schema and data are used to record
which products directly contain which other products in what quantities.
Since the first two arguments of the direct containment predicate are
Products, one or more ring constraints might apply. Extend the
schema to express the predicate contains(p1,p2), which indicates
which product contains which product (directly or indirectly). Use
contains to constrain direct containment to be acyclic. Then query

60 ◾ LogiQL: A Query Language for Smart Databases

this predicate to provide information about all instances of direct and
 indirect containment:

// Schema
Product(p), hasProductCode(p:pc) -> string(pc).
dire ctlyContainsIn[p1, p2] = qty -> Product(p1),

Product(p2), int(qty).

// Data
+directlyContainsIn("A", "B", 1).
+directlyContainsIn("A", "C", 2).
+directlyContainsIn("B", "C", 1).
+directlyContainsIn("B", "D", 1).
+directlyContainsIn("B", "E", 2).
+directlyContainsIn("C", "E", 2).
+directlyContainsIn("C", "F", 2).

Exercise 5C: Assuming no incest, the parenthood predicate is not just
intransitive, but strongly intransitive, so that no person can be a parent of
any of his/her non-direct descendants. Code a constraint to ensure that
parenthood is strongly intransitive.

UNIT 2.6: THE count AND total FUNCTIONS
This unit considers the first two of the four most important aggrega-
tion functions supported by LogiQL: count, total, max, and
min. Each of these four functions operates on a collection of facts
and returns a single value. Aggregation functions are invoked using
a special agg<<…>> syntax. Hence, rules referring to aggregation
 functions are called aggregation rules to distinguish them from other
kinds of derivation rules. Inside the double-angle brackets, a variable
is assigned the result of applying the indicated aggregation function
to facts satisfying a filtering condition that follows the closing double-
angle bracket.

Computing Counts

To invoke the count function, the following pattern is used:

agg<<n = count()>> condition
// n is the number of instances where condition is true.

Intermediate Aspects ◾ 61

As our first example, we’ll use the count function to derive the number
of British monarchs, as listed in Table 2.9. The code below provides the
basic schema for this domain, as discussed in Chapter 1:

Monarch(m), hasMonarchName(m:n) -> string(n).
Gender(g), hasGenderCode(g:gc) -> string(gc).
genderOf[m] = g -> Monarch(m), Gender(g).
genderOf[_] = g -> g = "M" ; g = "F".
Monarch(m) -> genderOf[m] = _.

Let us use the predicate nrMonarchs[]=n to denote the number of
monarchs. Because this function takes no key arguments, you may also
think of it as a variable whose value at any given moment of time is the
number of Monarch entities. Note that to be able to hold the result of
the count function, the value argument of nrMonarchs[] must be of
type int. The following code uses the count function to derive the num-
ber of monarchs:

nrMonarchs[] = n -> int(n).
nrMonarchs[] = n <- agg<<n = count()>> Monarch(_).
// nrMonarchs = number of monarchs.

The count function, written as count(), returns the number of instances
satisfying the condition specified after the double-angle brackets. In this

TABLE 2.9 Genders of British
Monarchs

Monarch Gender
Anne F
George I M
George II M
George III M
George IV M
William IV M
Victoria F
Edward VII M
George V M
Edward VIII M
George VI M
Elizabeth II F

Note: M, male; F, female.

62 ◾ LogiQL: A Query Language for Smart Databases

case it counts the number of facts where some object (denoted by the
anonymous variable) is a monarch.

If you install the program with the monarchy data shown above
and then print or query the nrMonarchs predicate, you will get 12 as
the result.

In the above example, we declared the nrMonarchs predicate along
with a derivation rule using it. You may also use the count function in
ad hoc queries, using an anonymous predicate (‘_[]’) for the query result.
For example, you could query for the number of kings using the following
query string:

_[] = n <- agg<<n = count()>> Monarch(m),
genderOf[m] = "M".

// Return the number of kings (male monarchs).

Unlike the earlier use of count, the condition to be satisfied here is a
conjunction. Be aware however that disjunctions are not allowed in such
situations. For the data shown, this query returns the value 9.

Dealing with Empty Predicates

There is a subtle issue raised if the condition for the count function is
never satisfied. You might expect that count would return a value of zero.
In this case, however, the query is considered to have failed, and no value
is assigned to the function result. For example, the following query has a
condition that can never be satisfied, so the query result is simply empty,
instead of being the number 0:

_[] = n <- agg<<n = count()>> Monarch(m), !Monarch(m).

Although this example is silly, there are situations where you would like to
see a value of zero. As a simple example, consider Table 2.10.

TABLE 2.10 Descendants of Princess Diana and Prince Charles

Person Children
Princess Diana Prince William, Prince Harry
Prince Charles Prince William, Prince Harry
Prince William Prince George
Prince Harry
Catherine, Duchess of Cambridge Prince George

Intermediate Aspects ◾ 63

We may code this report as follows. (Strictly speaking, we should add
the ring constraints on parenthood discussed previously, but for simplic-
ity let’s ignore these for now.)

// Schema
Person(p), hasPersonName(p:n) -> string(n).
isParentOf(p1, p2) -> Person(p1), Person(p2).

// Data
+isParentOf("Princess Diana", "Prince William").
+isParentOf("Princess Diana", "Prince Harry").
+isParentOf("Prince Charles", "Prince William").
+isParentOf("Prince Charles", "Prince Harry").
+isParentOf("Prince William", "Prince George").
+isP arentOf("Catherine, Duchess of Cambridge",

"Prince George").

Now suppose we want to use the count function to derive, for each per-
son, how many children that person has. To begin, we might try adding
the following code to the schema:

nrChildrenOf[p] = n -> Person(p), int(n).
nrC hildrenOf[p] = n <- agg<<n = count()>>

isParentOf(p, _).
// The number of children of person p =
// the count of parenthood facts for person p.

If you run the program with the data shown and then print the Person and
nrChildrenOf predicates, you get the following results:

/— - start of Person facts— -\
 Prince Charles
 Prince Harry
 Prince William
 Princess Diana
 Prince George
 Catherine, Duchess of Cambridge
\— — end of Person facts— —

/— - start of nrChildrenOf facts— -\
 Prince Charles, 2
 Princess Diana, 2

64 ◾ LogiQL: A Query Language for Smart Databases

 Prince William, 1
 Catherine, Duchess of Cambridge, 1
\— — end of nrChildrenOf facts— — /

As expected, we see that Prince Charles and Princess Diana each have
two children and that Prince William and “Princess Kate” have one.
However, Prince Harry and Prince George are excluded from the
nrChildrenOf output because they do not play the parent role in
any parenthood facts. We might instead want to include them with a
value of zero for their number of children. One way to do this is to split
the nrChildrenOf rule into two pieces—one to handle the case of
 parents with children and another to deal with people who do not have
children.

To implement the first part of this strategy, we rename the
 nrChildrenOf predicate to positiveNrChildrenOf to deal with
the case where the number of children is greater than zero:

positiveNrChildrenOf[p] = n -> Person(p), int(n).
posi tiveNrChildrenOf[p] = n <- agg<<n = count()>>

isParentOf(p, _).
// T he positive number (i.e. number above 0) of
// children of person p = the count of parenthood
// facts for person p.

We can then derive the nrChildrenOf predicate using two rules, one
for this case and one for the case of no children, as shown below:

nrChildrenOf[p] = n -> Person(p), int(n).
nrChildrenOf[p] = 0 <- Person(p), !isParentOf(p, _).
nrCh ildrenOf[p] = positiveNrChildrenOf[p] <-

isParentOf(p, _).
// The number of children of p = 0
// if p is a person who is not a parent of someone,
// else it's the positive number of children of p.

With this change, a print of the nrChildrenOf predicate displays the
intended results:

/— - start of nrChildrenOf facts— -\
 Princess Diana, 2
 Prince William, 1

Intermediate Aspects ◾ 65

 Prince Charles, 2
 Catherine, Duchess of Cambridge, 1
 Prince Harry, 0
 Prince George, 0
\— — end of nrChildrenOf facts— — /

Be aware that there is a subtle performance cost to taking the above
approach. For each Person entity, both of the nrChildrenOf rules
must search the isParentOf predicate, even though we know that the
Person cannot satisfy both rules (a person cannot both be a parent and
not be a parent). In Appendix J, we will revisit this example to show how
this extra cost can be avoided.

Computing Totals and Averages

This section discusses the total function, as well as how it can be used
together with the count function to compute averages. The total func-
tion operates on a collection of facts and returns a single value; but unlike
the count function, total requires an individual variable as a key argu-
ment. If x and y are individual variables and Cx denotes a condition in
which x is a variable, then the following syntax is used to assign the value
of total(x) to y when the condition Cx is true:

agg<<y = total(x)>> Cx // y = total(Cx) where Cx is true.

The total function sums numeric values, and therefore total(x) is
legal only if x is a numeric variable. Table 2.11 lists the numeric datatypes
supported by LogiQL.

For floating-point numbers that include an exponent, “E” precedes the
power of 10. For example, the universal gravitational constant 6.67 × 10−11
may be written 6.67E-11.f. Note that to distinguish literal values of
types float, an explicit suffix f is required. Literals of type decimal
may optionally include the suffix d.

TABLE 2.11 LogiQL Numeric Datatypes

Numeric Datatype LogiQL Syntax Examples

Integer int −3, 0, 35
Floating Point float 0.0f, 31.555f, 2.9979E8f, 6.67E-11f
Decimal decimal 0.0, 567.99d

66 ◾ LogiQL: A Query Language for Smart Databases

There are also built-in predicates for converting among types. The
format for usage is that the names of the two types precede the name
 convert, as in the following example that converts a string literal to
decimal:

+a[] = string:decimal:convert["52.43"].

As another example of the total function, consider the expense report
 presented in Table 2.12. Currently, LogiQL allows the total function
only on numeric values and has no built-in support for units of measure,
so we represent U.S. dollar amounts simply by numeric values. We use the
 decimal datatype to encode expense amounts. A basic schema and input
data for the report is shown below:

// Schema
Item(i), hasItemName(i:n) -> string(n).
expenseOf[i] = e -> Item(i), decimal(e).
It em(i) -> expenseOf[i] = _.
// Each item has an expense.

// Data
+expenseOf["Travel"] = 300.50.
+expenseOf["Accommodation"] = 300.50.
+expenseOf["Meals"] = 100.20.

To derive the total expense, we add the following code to the schema, using
the function totalExpense[] to store the derived total, and using the
total function to sum over each expense amount:

totalExpense[] = t -> decimal(t).
tota lExpense[] = t <- agg<<t = total(e)>>

expenseOf[_] = e.
// The total expense is the sum of the item expenses.

TABLE 2.12 Expense Report

Item Expense (US$)
Travel 300.50
Accommodation 300.50
Meals 100.20
Total 701.20

Intermediate Aspects ◾ 67

Note that 300.50 appears twice in the expense column of the above table.
When the total function is applied to the asserted facts, it adds each of
the two duplicate values just like any other value. So if you compile the
program with the data shown and then print or query the totalEx-
pense predicate, you get the correct value 701.2 (not 400.7) as the result.

Note also that LogiQL requires the result datatype for the total func-
tion to be the same as the input datatype of the component being summed.
For example, changing the datatype of totalexpense in the above code
to be float results in an error.

Now consider the report in Table 2.13 that deals with multiple expense
claims, where we wish to total the expenses for each claim.

Using the ternary predicate claimItemExpense[c,i]=e to
indicate that claim c for item i has expense e and the expression
totalExpenseOf[c]=t to indicate that claim c has a total expense
of t, we may code this report as follows:

Claim(c), hasClaimNr(c:n) -> int(n).
Item(i), hasItemName(i:n) -> string(n).
clai mItemExpense[c, i] = e -> Claim(c), Item(i),

decimal(e).
Claim(c) -> claimItemExpense[c, _] = _.
// Each claim has an item with an expense.
totalExpenseOf[c] = t -> Claim(c), decimal(t).
totalExpenseOf[c] = t <-
 agg<<t = total(e)>> claimItemExpense[c, _] = e.
// The total expense of claim c is the sum of
// the item expenses on claim c.

The input data for the report may be asserted as follows:

+claimItemExpense[1, "Travel"] = 300.50.
+claimItemExpense[1, "Accommodation"] = 300.50.
+claimItemExpense[1, "Meals"] = 100.20.

TABLE 2.13 Multiple Expense Claims

Expense Claim Item Expense (US$) Total (US$)
1 Travel 300.50

Accommodation 300.50
Meals 100.20 701.20

2 Travel 55.05
Meals 30.10 85.15

68 ◾ LogiQL: A Query Language for Smart Databases

+claimItemExpense[2, "Travel"] = 55.05.
+claimItemExpense[2, "Meals"] = 30.10.

If you run the program with the data shown, and then print the total
ExpenseOf predicate, you get the following:

/— - start of totalExpenseOf facts— -\
 2, 85.15
 1, 701.2
\— — end of totalExpenseOf facts— — /

Now consider Table 2.14 containing estimated IQs for some famous people
(for more listings, see www.kids-iq-tests.com/famous-people.html). Suppose
we wish to compute the average IQ of those listed. LogiQL does not include
a function to compute averages, but we can use the total function to sum
the IQs, and the count function to count the number of IQs, and then
divide the sum by the count to compute the average IQ.

As a first attempt, we could try the following, using iqOf[p] = iq
to mean the IQ of person p is iq. Assuming all IQs are positive and none
exceeds 255, we treat IQ values as ints and add constraints on the maxi-
mum and minimum IQ:

// Schema
Person(p), hasPersonName(p:n) -> string(n).
iqOf[p] = iq -> Person(p), int(iq).
iqOf[_] = iq -> 0 < = iq, iq <= 255.
// Each IQ > = 0 and <= 255.
Person(p) -> iqOf[p] = _. // Each person has an IQ.
nrPersons[] = n -> int(n).
nrPersons[] = n <- agg<<n = count()>> Person(_).
totalIQ[] = t -> int(t).
totalIQ[] = t <- agg<<t = total(iq)>> iqOf[_] = iq.
avgIQ[] = n -> int(n).
avgIQ[] = n <- n = totalIQ[]/nrPersons[].

// Data
+iqOf["Hillary Clinton"] = 140.
+iqOf["Albert Einstein"] = 160.
+iqOf["Bill Gates"] = 160.

If you run the program with the data shown and print or query the avgIQ
predicate, you get 153, which omits the fractional part. This is because

Intermediate Aspects ◾ 69

avgIQ is obtained by dividing one integer into another, and the division
operator (‘/’) is then treated as integer division not floating-point divi-
sion. If you wish to include the fractional part in the result of dividing one
integer term x by another integer term y, you may instead use a conver-
sion function (i.e., int:float:convert). For example, if you replace
the derivation rule for avgIQ given above by the following line of code,
declare avgIQ to be of type float, and then recompile the program
and print or query the avgIQ predicate, you get 153.33333333333334,
which includes the fractional part:

avgIQ[] = n <- n =
avgIQ[] = n <-
 n = int:float:convert[totalIQ[]]/

int:float:convert[nrPersons[]].

Note that if the terms in the division are already typed as floating point
(e.g., float instead of int), floating-point division is automatically
performed when using “/” for the division operator. Also note that any
attempt to divide by zero fails to return a result.

Tip: When using the count function, decide whether or not to return 0 if
there are no facts to be counted.

Tip: When using the total function, ensure that the datatype of the
numbers being summed is large enough to hold the final sum.

Tip: When using division, decide whether integer, decimal, or floating-
point division is intended, and use the appropriate datatype.

Exercise 6A: Extend the program found in countMonarchs.
logic with code to derive the predicate nrQueens[]=n to count the

TABLE 2.14 IQs of Famous People

Person IQ
Hillary Clinton 140
Albert Einstein 160
Bill Gates 160

70 ◾ LogiQL: A Query Language for Smart Databases

number of queens. Then compile and run your program with the data in
genderOfData.logic and print nrQueens[]. Include code to return
0 if there are no queens.

Exercise 6B: Write and test a program to record the facts in Table 2.15 and
display the number of accessories (possibly 0) available for each product.

Exercise 6C: The report in Table 2.16 is used to maintain details about
course credits obtained by students for the courses they have passed.
A stub of a program for this report is shown here, as well as the relevant
data. The stub can be found in credits.logic, and the data can be
found in creditsData.logic. Extend the program to compute the
total credit obtained by each student and print the results:

// Schema
Student(s), hasStudentNr(s:n) -> int(n).
Course(c), hasCourseCode(c:cc) -> string(cc).
hasCredit[c] = n -> Course(c), int(n).
passedCourse(s, c) -> Student(s), Course(c).

// Data
+hasCredit["CS100"] = 5, +hasCredit["MA100"] = 5.
+hasCredit["PH101"] = 4, +hasCredit["JP100"] = 4.
+pas sedCourse(101, "CS100"), +passedCourse(101,

"MA100"), +passedCourse(101, "PH101").
+pas sedCourse(202, "CS100"), +passedCourse(202,

"JP100").

TABLE 2.16 Student Course Credits

Student Number Course Credit Total Credit
101 CS100 5

MA100 5
PH101 4 14

202 CS100 5
JP100 4 9

TABLE 2.15 Products and Accessories

Product Accessories
Paperback book
Kindle Cover, light, wireless

Intermediate Aspects ◾ 71

Exercise 6D: The expense claim program and data discussed in this unit
are stored as the files expenses.logic and expensesData.logic.
Extend the program to compute the average expense of items on each of
the two expense claims.

UNIT 2.7: CONSOLIDATION EXERCISE 2
This exercise gives you a chance to test how well you have mastered the
topics covered in this chapter. The application domain is adapted from
a previously published example by one of the authors.* The universe of
discourse concerns a fragment of an information system used by a book
publisher to maintain details about its books and personnel. Your task is
to model this domain in LogiQL.

PART 1: BOOKS
One requirement of the information system is to produce reports about
books that are either already published by the publisher or are under
consideration for publication. Each of these books is identified by an
International Standard Book Number (ISBN). For any given title, the pub-
lisher also has a policy of publishing at most one book with that title in any
given year; for example, only one book published by the company in 2010
may be titled Informatics. It is possible that a book is directly translated
from another book written in a different language. A sample extract of
this report is shown in Table 2.17.

* T. Halpin. “Fact-Oriented Modeling: Past, Present and Future.” Conceptual Modelling in
Information Systems Engineering, Springer, 2007, pp. 19–38.

TABLE 2.17 Book Publication Details

ISBN Title Language Published Translated from
1-33456-012-3 Mizu no Kokoro Japanese 2009
2-55860-123-6 Mind Like Water English 2010 1-33456-012-3
3-540-25432-2 Informatics English 2010
4-567-12345-3 Semantics English 2011
5-123-45678-5 Informatics English 2011
6-246-80246-8 Geist wie Wasser German 2011 2-55860-123-6
7-345-10267-4 Geest als Water Dutch 6-246-80246-8
8-543-21012-3 Mens quasi Aquam Latin 2-55860-123-6

72 ◾ LogiQL: A Query Language for Smart Databases

The predicate declarations and some constraints for this report are
shown below:

Book(b), hasISBN(b:n) -> string(n).
bookTitleOf[b] = t -> Book(b), string(t).
Lan guage(lang), hasLanguageName(lang:ln) -> string(ln).
languageOf[b] = lang -> Book(b), Language(lang).
publicationYearOf[b] = yr -> Book(b), int(yr).
translationParentOf[b1] = b2 -> Book(b1), Book(b2).
Book(b) -> bookTitleOf[b] = _, languageOf[b] = _.
// Each book has a title and is written in a language.

The file and data for this program are accessible as Q1.logic and
Q1Data.logic.

Q1: Extend the program with code to express the following external
uniqueness constraint: For each book title and year, at most one book of
that title is published in that year. Also, add code to capture the following
exclusion constraint: If a book is directly translated from another book,
its language must differ from that of the other book. The answers can be
found in the file Q1Answer.logic.

Q2: Extend the program to derive the predicate isaTranslationOf
(covering direct and indirect book translations) representing the transi-
tive closure of translationParentOf. Constrain the direct translation
predicate to be acyclic. Test your code by trying to add data that violates the
constraint. Explain why there is no need to add an intransitivity constraint.
The answers are in Q2Answer.logic and Q2Counterexample.logic.

Q3: Write a query to compute the number of books that are translated
(directly or indirectly) from the book titled Mizu no Kokoro that was pub-
lished in 2009. The answer is in Q3Answer.logic.

Q4: Write a query to list the ISBN and title of each book that is trans-
lated (directly or indirectly) from the book with ISBN 1-33456-012-3. The
answer is in Q4Answer.logic.

PART 2: BOOK SALES
A report is also maintained on sales of published books. The extract
from this report in Table 2.18 shows the sales figures for those pub-
lished books in the previous report for which sales figures are available.

Intermediate Aspects ◾ 73

The publisher considers any book that has sold at least 10,000 copies to
be a best seller.

Q5: Write a program to model this report. Extend the file Q5.logic
by introducing PublishedBook as a derived subtype of Book. Use
the ternary predicate yearlySales[b,yr]=n to record the number of
 copies sold for a given book in a given year, ignoring books with no sales.
Use cumulativeSalesOf[b]=n for computing the total number of
copies sold to date for a given book with sales. Use the unary predicate
isaBestSeller to derive whether a published book is a best seller. For
testing purposes, you may use the associated data file Q5Data.logic.
The answer is in the file Q5Answer.logic.

Q6: Add a rule to derive nrSalesYearsOf[b], which computes for each
sold book b, the positive number of years that book has sales figures. Then
add a rule to derive avgYearlySalesOf[b], which computes, for each
book b with sales figures, the average number of copies sold per year. The
answer is in Q6Answer.logic.

PART 3: PERSONNEL
Reports are also maintained on persons who perform work for the com-
pany as employees and/or authors and/or translators. The publisher iden-
tifies such persons by a personnel number (PNr). If a person has a Social
Security Number (SSN), this is also recorded. Table 2.19 is an extract from
a personnel report.

The predicate declarations and some constraints for this report are
shown below. The applicableGenderOf predicate is used to indicate
which person titles are restricted to which genders. For example, “Mr” is
restricted to males and “Mrs” to females, while “Dr” has no such restriction.

TABLE 2.18 Book Sales Information

ISBN Year Number Sold Cumulative Sales Best Seller?
1-33456-012-3 2009 5000

2010 6000
2011 5000 16000 Yes

2-55860-123-6 2010 3000
2011 4000 7000 No

3-540-25432-2 2010 1000
2011 2000 3000 No

74 ◾ LogiQL: A Query Language for Smart Databases

Though not required, we declared the PersonTitle predicate with
a string refmode, instead of simply using string in its place, since
this better explains the use of the applicableGenderOf predicate.
However, doing this requires that we populate the PersonTitle
 predicate explicitly with data:

Person(p), hasPNr(p:n) -> int(n).
Gender(g), hasGenderCode(g:gc) -> string(gc).
PersonTitle(pt) -> string(pt).
personNameOf[p] = pn -> Person(p), string(pn).
ssnOf[p] = ssn -> Person(p), string(ssn).
personTitleOf[p] = pt -> Person(p), PersonTitle(pt).
genderOf[p] = g -> Person(p), Gender(g).
appl icableGenderOf[pt] = g -> PersonTitle(pt),

Gender(g).
Person(p) -> personNameOf[p] = _,
personTitleOf[p] = _, genderOf[p] = _.
hasGenderCode(_:gc) -> gc = "M" ; gc = "F".

The program and data are accessible as Q7.logic and Q7Data.logic:

Q7: Add constraint code to ensure that the ssnOf predicate is inverse-
functional (i.e., each SSN applies to at most one person). Also add con-
straint code to enforce the following subset constraint: If a person has a
person title that applies only to a specific gender, then that person must be
of that gender. The answer is in Q7Answer.logic.

TABLE 2.19 Personnel Information
PNr Name SSN Title Gender
1 John Smith 123-45-6789 Mr. M
2 Don Bradchap 246-80-2468 Sir M
3 Sue Yakamoto Mrs. F
4 Yoko Oya Dr. F
5 Isaac Seldon Dr. M
6 Fumie Mifune 678-90-1234 Dr. F
7 John Smith 789-01-2345 Mr. M
8 Ann Jones Ms. F
9 Selena Most Mrs. F
10 Julius Antony 100-01-2345 Mr. M
11 Bernhard Schmidt Dr. M
12 Herman van Reit Dr. M

Note: M, male; F, female.

Intermediate Aspects ◾ 75

The report in Table 2.20 indicates who plays what roles (author, translator,
reviewer) for what books. If a book is a translation of another book, then
its author(s) is/are not explicitly recorded.

There are many different ways to model this report, but let us choose
to use the three predicate declarations shown below. The full program up
to this point, including the previous code and these new predicate dec-
larations, is accessible as the file Q8.logic. The associated data file is
Q8Data.logic:

authored(p, b) -> Person(p), Book(b).
translatedFor(p, b) -> Person(p), Book(b).
reviewed(p, b) -> Person(p), Book(b).

Q8: Without introducing any more subtypes, add code to the above
to enforce the following constraints: Q8a: the subset constraint that
each book with a translator is translated from another book (use
the predicate translationParentOf); Q8b: the subset con-
straint that each reviewed book has an author; Q8c: the inclusive-or
 constraint that each book is either authored or translated, ignoring
the exclusive aspect; Q8d: the exclusion constraint that no person
may author and review the same book. The answer is in Q8Answer.
logic.

Q9: Write a query to list each book that is a translation of another book,
as well as the PNr and name of the original author(s). Hint: Make use
of the isaTranslationOf predicate. The answer is in Q9Answer.
logic.

TABLE 2.20 Personnel Roles

ISBN Author PNrs Translator PNrs Reviewer PNrs
1-33456-012-3 3 1, 4
2-55860-123-6 3
3-540-25432-2 5 1, 7
4-567-12345-3 5, 8 7, 11
5-123-45678-5 7 5, 8
6-246-80246-8 11
7-345-10267-4 12
8-543-21012-3 10, 12

76 ◾ LogiQL: A Query Language for Smart Databases

ANSWERS TO EXERCISES

Answer to Exercise 1A:

 isFatherOf(p1, p2) -> Person(p1), Person(p2).
 // If p1 is father of p2, then p1 and p2 are
 // persons.

 isFatherOf(p1, p), isFatherOf(p2, p) -> p1 = p2.
 // Each person has at most one father.

Answer to Exercise 1B:

 fatherOf[p1] = p2 -> Person(p1), Person(p2).
 // If the father of p1 is p2, then p1 and p2 are
 // persons. Each person has at most one father.

 isFatherOf(p1, p2) <- fatherOf[p2] = p1.
 // p1 is father of p2 if the father of p2 is p1.

Answer to Exercise 2A:

 inPositionHasGivenName[_, n] = _ -> n > 0, n < 10.
 // If something in position n has some given name
 // then the integer n is at least 1 and at most 9.

Note: The constraint may also be written as follows:

 inPo sitionHasGivenName[_, n] = _ -> n > = 1,
n < = 9.

Answer to Exercise 2B:

 inPositionHasGivenName[m, n1] = gn,
 inPositionHasGivenName[m, n2] = gn -> n1 = n2.
 // Each given name of a monarch appears in only one
 // position in that monarch's list of given names.

Note the occurrence of multiple atoms on the left-hand side of this
constraint.

Intermediate Aspects ◾ 77

Answer to Exercise 2C:

 sharesGivenName(m1, m2) -> Monarch(m1), Monarch(m2).
 sharesGivenName(m1, m2) <-
 hasGivenName(m1, n), hasGivenName(m2, n),
 m1 ! = m2.
 // Monarchs m1 and m2 share a given name if they are
 // different monarchs and there is a given name n
 // that both of them have.

Answer to Exercise 2D:

 sharesGivenName2(m1, m2) -> Monarch(m1), Monarch(m2).
 sharesGivenName2(m1, m2) <-
 hasGivenName(m1, n), hasGivenName(m2, n),
 hasMonarchName(m1:n1), hasMonarchName(m2:n2),

n1 < n2.
 // Monarchs m1 and m2 share a given name if there is a
 // given name n that both of them have and if the
 // first Monarch name is less than the second's.

Answer to Exercise 3A:

 Employee(e), hasEmpNr(e:en) -> string(en).
 ssnOf[e] = ssn -> Employee(e), string(ssn).
 passportNrOf[e] = ppn -> Employee(e), string(ppn).

 ssnOf[e1] = ssn, ssnOf[e2] = ssn -> e1 = e2.
 // Each Social Security Number is for only one
 // employee.

 pass portNrOf[e1] = ppn, passportNrOf[e2] = ppn ->
e1 = e2.

 // Each passport nr is for only one employee.

 Employee(e) -> ssnOf[e] = _ ; passportNrOf[e] = _.
 // Each employee has a Social Security Number
 // or a passport number.

Answer to Exercise 3B:

 // Schema
 Store(s), hasNeighborhood(s:name) -> string(name).

78 ◾ LogiQL: A Query Language for Smart Databases

 xCoordinateOf[s] = x -> Store(s), int(x).
 yCoordinateOf[s] = y -> Store(s), int(y).

 // Each (x, y) coordinate pair applies to only one
 // store.
 xCoo rdinateOf[s1] = x, yCoordinateOf[s1] =

y, xCoordinateOf[s2] = x,
yCoordinateOf[s2] = y -> s1 = s2.

 // Data
 +xCoordinateOf["A"] = 2, +yCoordinateOf["A"] = 3.
 +xCoordinateOf["B"] = 1, +yCoordinateOf["B"] = 1.
 +xCoordinateOf["C"] = 4, +yCoordinateOf["C"] = 1.

 // Query
 _(s, x, y) <- xCoordinateOf[s] = x,

yCoordinateOf[s] = y.

Result:

 C, 4, 1 B, 1, 1 A, 2, 3

Answer to Exercise 4A:

 Company(c), hasCompanyName(c:n) -> string(n).
 Product(p), hasProductName(p:n) -> string(n).
 carries(c, p) -> Company(c), Product(p).
 Dealer(c) -> Company(c).
 Dealer(c) <- carries(c, _).
 NonDealer(c) -> Company(c).
 NonDealer(c) <- Company(c), !Dealer(c).
 // Instead of !Dealer(c) you may use !carries(c, _).
 IPhoneDealer(c) -> Dealer(c).
 IPhoneDealer(c) <- carries(c, "IPhone").

Results:

 Company: Sears, Target, KMart
 Dealer: Sears, Target
 NonDealer: KMart
 IPhoneDealer: Sears

Answer to Exercise 4B:

 provides(s, c) -> owns(s, c).

Intermediate Aspects ◾ 79

Answer to Exercise 5A:

 _(p) <- isAncestorOf(p, "Prince William").

Results:

 Prince Charles
 Princess Diana
 John Spencer
 Frances Kydd
 Elizabeth II
 Prince Phillip
 Edmond Roche
 Ruth Roche
 Albert Spencer
 Cynthia Spencer
 Prince Andrew
 Princess Alice
 George VI
 Elizabeth Bowes-Lyon
 William Gill
 Ruth Gill
 James Roche
 Frances Work
 James Hamilton
 Rosalind Hamilton
 Charles Spencer
 Margaret Baring
 Prince Louis
 Princess Victoria
 George I of Greece
 Olga Constantinovna
 Claude Bowes-Lyon
 Cecilia Bowes-Lyon
 George V
 Mary of Teck

Answer to Exercise 5B:

 // Schema
 Product(p), hasProductCode(p:pc) -> string(pc).
 dire ctlyContainsIn[p1, p2] = qty -> Product(p1),

Product(p2), int(qty).

80 ◾ LogiQL: A Query Language for Smart Databases

 contains(p1, p2) <- directlyContainsIn[p1, p2] = _.
 cont ains(p1, p2) <- directlyContainsIn[p1, p3] = _,

contains(p3, p2).
 !contains(p, p).

 // Query
 _(p, q) <- contains(p, q).

Results:

 B, C
 A, C
 C, F
 B, F
 A, F
 C, E
 B, E
 A, E
 A, B
 B, D
 A, D

Answer to Exercise 5C:

 isPa rentOf(p1, p2), isAncestorOf(p2, p3) ->
!isParentOf(p1, p3).

Answer to Exercise 6A:

 nrQueens[] = n -> int(n).
 nrQu eens[] = n <- agg<<n = count()>> Monarch(m),

genderOf[m] = "F".
 // nrQueens = count of female monarchs.

Result: 3

Answer to Exercise 6B:

 positiveNrAccessoriesOf[p] = n -> Product(p), int(n).
 positiveNrAccessoriesOf[p] = n <-
 agg<<n = count()>> features(p, _).
 nrAccessoriesOf[p] = 0 <- Product(p), !features(p, _).

Intermediate Aspects ◾ 81

 nrAccessoriesOf[p] = positiveNrAccessoriesOf[p] <-
 features(p, _).

Answer to Exercise 6C:

 Student(s), hasStudentNr(s:n) -> int(n).
 Course(c), hasCourseCode(c:cc) -> string(cc).
 hasCredit[c] = n -> Course(c), int(n).
 passedCourse(s, c) -> Student(s), Course(c).
 totalCreditOf[s] = t -> Student(s), int(t).
 totalCreditOf[s] = t <-
 agg<<t = total(n)>> passedCourse(s, c),
 hasCredit[c] = n.
 // The total credit of student s is the sum of
 // the credit points of the courses passed by s.

Result:

 /— - start of totalCreditOf facts— -\
 202, 9
 101, 14
 \— — end of totalCreditOf facts— — /

Answer to Exercise 6D:

 Claim(c), hasClaimNr(c:n) -> int(n).
 Item(i), hasItemName(i:n) -> string(n).
 clai mItemExpense[c, i] = e -> Claim(c), Item(i),

decimal(e).
 Claim(c) -> claimItemExpense[c, _] = _.
 // Each claim has an item with an expense.
 totalExpenseOf[c] = t -> Claim(c), decimal(t).
 totalExpenseOf[c] = t <-
 agg<<t = total(e)>> claimItemExpense[c, _] = e.
 // The total expense of claim c is the sum of
 // the item expenses on claim c.
 nrItemsOf[c] = n -> Claim(c), int(n).
 nrItemsOf[c] = n <-
 agg<<n = count()>> claimItemExpense[c, _] = _.
 avgExpenseOf[c] = a -> Claim(c), decimal(a).
 avgExpenseOf[c] = avgExp <-
 avgExp = totalExpenseOf[c]/nrItemsOf[c].

82 ◾ LogiQL: A Query Language for Smart Databases

Result:

 /— - start of avgExpenseOf facts— -\
 2, 42.575
 1, 233.733
 \— — end of avgExpenseOf facts— — /

