
xxi

Quick Start

LogiQL is a powerful language containing many features to be
described in the upcoming chapters. The text includes numerous

embedded examples and exercises that you are encouraged to try out for
yourself. There are several ways to actually run your programs including a
Web-based interpreter, a sophisticated middleware interface, and the one
we choose to use in this book, a command-line interface, called lb.

The lb command and its subcommands are described in Appendix A,
but in this section, we will take you through a short example so you can
quickly get started using LogiQL. The example covers how you use lb and
LogiQL to declare predicates and constraints, define rules, enter data, and
query the results. In particular, it computes for each member of the British
monarchy those other monarchs who were his or her ancestors.

The first thing you need to do for any application is to create a work-
space that will contain your data and program. The lb create com-
mand can do this for you as follows:

lb create royalty

Here we give the name to our workspace. The system should respond with
the message created workspace 'royalty' indicating that the
workspace has been successfully created.

As with most programming languages, in LogiQL you need to declare
the properties of the data with which you will be working. Our example
concerns the British monarchy, so it is natural to declare a data type to
represent them. A declaration to do this looks like the following:

Monarch(m), hasMonarchName(m:s) -> string(s).

The declaration says that a new predicate called Monarch exists and
that Monarch entities will be referred to using their names via the

xxii ◾ Quick Start

hasMonarchName predicate, where the monarch name itself is
 represented internally with a LogiQL string value.

To install this declaration into the royalty workspace, you can use
the addblock subcommand of the lb command as follows:

lb addblock royalty 'Monarch(m), hasMonarchName(m:s)
-> string(s).'

The command indicates that a new block of code is being added to the
royalty workspace. Note the use of apostrophes so that the command
shell you are using will ignore any character that has special mean-
ing to it. Then the system responds with the message added block
'block_1Z1I6CCX' where block_1Z1I6CCX is the internal name
that the system has given to your program segment.

The data with which your program is concerned has to do with parent-
hood facts. So you can now declare a predicate to hold this information:

lb addblock royalty 'parentOf[m1] = m2 -> Monarch(m1),
Monarch(m2).'

That is, parentOf is a predicate that when given a Monarch argument
(m1) responds with another Monarch (m2) that is m1’s parent.

In a similar manner, you can add constraints preventing your data
from containing some mistakes, such as someone being their own parent:

lb addblock royalty '!parentOf[m1] = m1.'

Now that you have declared your predicates and a constraint, you can
actually enter the data into the workspace. This time you will use the
exec subcommand of lb as follows:

lb exec royalty '
 +parentOf["George II"] = "George I".
 +parentOf["George IV"] = "George III".
 +parentOf["William IV"] = "George III".
 +parentOf["Edward VII"] = "Victoria".
 +parentOf["George V"] = "Edward VII".
 +parentOf["Edward VIII"] = "George V".
 +parentOf["George VI"] = "George V".
 +parentOf["Elizabeth II"] = "George VI".
'

Quick Start ◾ xxiii

In the case of the exec subcommand, no feedback is given to you for
 successful completion. However, if you wish to see the contents of the
parentOf predicate in the workspace, you can use the print subcom-
mand, as follows: lb print royalty parentOf.

Your results should look like the following, where the numbers within
square brackets are internal identifiers for each of the Monarch entities
in the workspace:

[10000000001] "George II" [10000000006] "George I"
[10000000002] "George V" [10000000005] "Edward VII"
[10000000003] "George IV" [10000000000] "George III"
[10000000004] "Edward VIII" [10000000002] "George V"
[10000000005] "Edward VII" [10000000012] "Victoria"
[10000000007] "Elizabeth II" [10000000013] "George VI"
[10000000013] "George VI" [10000000002] "George V"
[10000000015] "William IV" [10000000000] "George III"

You are now ready to write a rule to compute ancestors. An ancestor
is either a parent or the ancestor of a parent. This relationship can be
expressed in LogiQL with the following code:

lb addblock royalty '
 ancestorOf(m1, m2) -> Monarch(m1), Monarch(m2).
 ancestorOf(m1, m2) <- parentOf(m1, m2).
 ance storOf(m1, m2) <- parentOf(m1, m3),

ancestorOf(m3, m2).
'

To see the results, you can use the lb query subcommand. A LogiQL
query looks much like a rule, except that the name of the predicate being
defined begins with an underscore, such as in the following. (Note, we
have also used lb echo to dress up the output a bit.)

lb echo "Ancestors of British monarchs who were also
monarchs"
lb query royalty '
 _(s1, s2) <-
 ancestorOf(m1, m2),
 hasMonarchName(m1, s1),
 hasMonarchName(m2:s2).
'

xxiv ◾ Quick Start

Here are the results you should expect to see:

"Ancestors of British monarchs who were also monarchs"
/— — — — — — — - _— — — — — — — -\
"Edward VII" "Victoria"
"Edward VIII" "Edward VII"
"Edward VIII" "George V"
"Edward VIII" "Victoria"
"Elizabeth II" "Edward VII"
"Elizabeth II" "George V"
"Elizabeth II" "George VI"
"Elizabeth II" "Victoria"
"George II" "George I"
"George IV" "George III"
"George V" "Edward VII"
"George V" "Victoria"
"George VI" "Edward VII"
"George VI" "George V"
"George VI" "Victoria"
"William IV" "George III"
\— — — — — — — - _— — — — — — — -/

Finally, to clean up when you are done, you can delete the workspace using
lb delete royalty. You should then expect to see the following mes-
sage: deleted workspace 'royalty'.

You have now completed a very quick run through the basic process
of entering and executing a LogiQL program. The details of the language
constructs and the situations in which you should use them are described
in detail in the chapters to follow. Enjoy!

