
xv

Key LogiQL Concepts

LogiQL and its associated execution engine provide you with a 
powerful way to address your computational needs. Its power arises 

from its ability to efficiently deal with large amounts of data while avoiding 
many of the low-level implementation details found in other languages.

The language contains a number of intertwined features, and some con-
nections between concepts might not be immediately obvious as you read 
sequentially through this book. To ease your way, this section provides a 
brief introduction to the language’s key concepts that you will learn about 
in subsequent chapters. Each of the mentioned concepts is highlighted in 
bold and also appears in the Glossary to this book. Be aware that many of 
these terms have other senses. Further clarification is provided when the 
concepts are discussed in the chapters.

WORKSPACES
LogiQL programs manage workspaces (also called databases) that con-
tain both your program and your data. In particular, workspaces hold 
collections of facts, each of which is concerned with a predicate. In logic, 
predicates are either properties that may be held by individual things or 
relationships that may apply to multiple things. In a workspace, a collec-
tion of facts associated with a predicate is called that predicate’s popu-
lation. Sometimes the distinction between the logical predicate and its 
population is glossed over by referring to the stored predicate population 
simply as a predicate.

You can think of a stored predicate as a named table. The facts of a 
predicate population correspond to table rows, and each row comprises 
a tuple of data elements. There are two types of data elements stored in 
LogiQL workspaces. Built-in primitive types include strings, numbers, 
and datetimes. In addition, programmers can define their own entity 
types, elements of which are guaranteed to be distinct. Moreover, an entity 



xvi    ◾    Key LogiQL Concepts

type may have a corresponding programmer-visible reference scheme 
(refmode) that can be used to identify the individual elements of that type.

All of the tuples in a predicate population have the same length (arity). 
Thinking again in terms of tables, this says that all rows in a given table 
have the same number of data elements. Hence, a column in a table con-
sists of all of the data elements occupying the corresponding position in 
the facts of the predicate. Moreover, all of the elements of a column are of 
the same type. The data elements in a particular column of a predicate are 
said to fill that column’s role in the predicate.

Table 1 contains an example that you will see again in Chapter 1. It illus-
trates the houseOf predicate relating British monarchs to their houses. 
Monarch and House are entity types referenced by their names, which 
are elements of type string.

There are 12 facts in this predicate, and each fact fills two roles in the 
predicate population, one for the monarch and one for the house. A LogiQL 
program could be used to add these facts to the houseOf predicate and 
store the results in a workspace.

LOGIC PROGRAMS
To manipulate the predicates in a workspace, you write logic programs. 
A logic program is a set of clauses, each of which makes a claim about the 
facts in a predicate. There are three kinds of clauses: fact assertions/retrac-
tions (facts), constraints, and derivation rules (rules). A fact assertion is 

TABLE 1  British Monarchy 
houseOf Predicate

Monarch House
Anne Stuart
George I Hanover
George II Hanover
George III Hanover
George IV Hanover
William IV Hanover
Victoria Hanover
Edward VII Saxe-Coburg and Gotha
George V Windsor
Edward VIII Windsor
George VI Windsor
Elizabeth II Windsor



Key LogiQL Concepts    ◾    xvii

used to add a fact to a predicate’s population, and a fact retraction is used 
to delete a fact from a predicate’s population. Constraints can be used to 
declare predicates or limit the facts that can populate them. Derivation 
rules are used for programmatically altering a workspace, typically by 
deriving new facts.

A clause comprises a head and/or a body, both of which contain 
atoms, possibly combined by operators. An atom consists of a predicate 
name and a parenthesized list of arguments, each of which corresponds 
to one of the predicate’s roles. In addition, an atom may be adorned 
with a delta modifier to control changes to the contents of the corre-
sponding predicate.

LogiQL’s syntax enables a programmer to specify two key properties of 
each rule: whether or not the predicate that the rule computes is an inten-
sional database (IDB) predicate or an extensional database (EDB) predi-
cate, and whether or not the rule computes an aggregation. EDB predicates 
are populated either by fact assertions, which have an empty body and 
a head containing only delta-modified atoms, or delta rules, that specify 
existing contributing predicates in their bodies. A program’s delta logic 
comprises its fact assertions/retractions and its delta rules. IDB predicates, 
in contrast, are populated by IDB rules, in which neither head nor body 
atoms may be delta modified. Aggregation rules have their own syntax that 
includes mention of one of the built-in functions for aggregating data.

Here are some examples of how these concepts are expressed in LogiQL. 
The first example illustrates how you could declare the Monarch entity 
type, along with its hasMonarchName refmode.

Monarch(m), hasMonarchName(m:s) -> string(s).

Here is how you can assert the existence of a specific Monarch entity:

+Monarch("George VI").

If you wished to ensure that each such monarch must belong to a house, 
you could specify the following constraint, using “_” to mean “something.”

Monarch(m) -> houseOf[m] = _.

If you wanted the LogiQL engine to automatically add facts about grand-
parents every time you added facts about parents, you could use the 
following IDB rule to derive the isGrandParentOf predicate.



xviii    ◾    Key LogiQL Concepts

isGr�andparentOf(p1, p2) <- isParentOf(p1, p3), 
isParentOf(p3, p2).

Alternatively, if you wished to manage the isGrandParent predicate 
yourself, you could use the following delta rule:

+isGrandparentOf(p1, p2) <-
	 +isParentOf(p1, p3), isParentOf(p3, p2) ;
	 isParentOf(p1, p3), +isParentOf(p3, p2).

Finally, here is an aggregation rule you could use to compute the number 
of monarchs:

nrMonarchs[] = n <- agg<<n = count()>> Monarch(_).

WORKSPACE ORGANIZATION AND MANAGEMENT
A LogiQL program manipulates two kinds of predicates—EDB predicates 
and IDB predicates. EDB predicates normally are used to hold the facts 
that you explicitly enter into the workspace with fact assertions or facts 
you wish to manage yourself using delta rules. The term extensional data-
base (EDB) is used to describe the set of all EDB predicate populations. 
In contrast, the facts populating IDB predicates are computed for you by 
your logic program with its IDB rules. The intensional database (IDB) is 
the set of IDB predicates stored in a workspace.

The logic program in a workspace comprises a set of blocks, each of 
which, in turn, is a set of related clauses residing in a source file. The pro-
cess of loading a block into a workspace is called installation, and when 
you install a block you can designate it as active or inactive. Active blocks 
are used to automatically update the predicates in a workspace, whereas 
inactive blocks are available for on-demand use.

Program evaluation is broken into atomic units called transactions, each 
of which has two stages. The initial stage is used for processing queries and 
for on-demand evaluation of inactive blocks. This is typically the stage 
at which fact assertions/retractions are applied. During the final stage, 
active blocks are evaluated by continually interpreting all active program 
rules until a fixed point is reached; that is, until no further changes to the 
workspace occur. If at any time during evaluation a constraint is violated, 
the current transaction aborts and the content of the workspace reverts to 
its state before the transaction began. When a non-aborting transaction 
completes, it is said to commit.



Key LogiQL Concepts    ◾    xix

Here is an example of a short LogiQL program consisting of two blocks. 
The first, an active block, provides a schema declaring the Person entity 
type and the isParentOf and isAncestorOf predicates. It also 
includes a constraint disallowing a person from being an ancestor of him-
self or herself.

Person(p), hasPersonName(p:n) -> string(n).
isParentOf(p1, p2) -> Person(p1), Person(p2).
isAncestorOf(p1, p2) -> Person(p1), Person(p2).
isAncestorOf(p1, p2) <- isParentOf(p1, p2).
isAn�cestorOf(p1, p2) <- isParentOf(p1, p3), 

isAncestorOf(p3, p2).
!isAncestorOf(p, p).

The second, inactive, block is responsible for populating the isParentOf 
predicate with three facts:

+isParentOf("Doctor Who", "Doc Brown").
+isParentOf("Doc Brown", "Merlin").
+isParentOf("Merlin", "Doctor Who").

The above program will not run as expected. Can you tell why? It is 
because the given facts and rules determine that Doctor Who is an 
ancestor of himself, but the constraint expressed in the schema disal-
lows this. If you try to run this program, it will print an error message 
and abort.

PROGRAMMING IN LOGIQL
The first step in writing a LogiQL program is, of course, to understand 
the problem that you are trying to solve. Usually, the problem consists of 
inputting a data file into a workspace, where rules are applied to derive 
new facts that you can later query. You express your understanding of 
the problem by devising a schema in the form of a set of predicate dec-
larations and accompanying constraints. Then you specify the rules 
you intend to use to compute the required results. You may also need to 
do some work preparing your input data for entry into the workspace. 
Naturally, you should also devise tests to ensure your program computes 
the correct result and performs efficiently. Hopefully, this book you 
are about to work through will prepare you to successfully accomplish 
these steps.


