
1

C h a p t e r 1

Basics

CONTENTS
Unit 1.1: Databases, Predicates, and Facts 2
Unit 1.2: Declaring Entity Types and Refmodes 4
Unit 1.3: Entering Facts 6
Unit 1.4: Expressing Domain Relationships with Predicates 7
Unit 1.5: Constraining the Data 10
Unit 1.6: Declaring Functional Predicates 11
Unit 1.7: Declaring Derivation Rules 14
Unit 1.8: Querying a Workspace 18
Unit 1.9: Consolidation Exercise 1 20

Part 1: Country of Birth 20
Part 2: Birth and Death Dates 21
Part 3: Age at Death 23
Part 4: Reigns and Ancestry 27

Answers to Exercises 29
Answers to Exercise 1 29
Answer to Exercise 2 29
Answer to Exercise 3 29
Answer to Exercise 4A 29
Answer to Exercise 4B 29
Answer to Exercise 5A 30
Answer to Exercise 5B 30
Answer to Exercise 6A 30
Answer to Exercise 6B 30
Answer to Exercise 6C 30
Answer to Exercise 6D 30

2 ◾ LogiQL: A Query Language for Smart Databases

The goal of the first chapter is to quickly get you started writing
LogiQL programs. Such a program tries to model aspects of a real-

world domain inside a computer. The program is written in the LogiQL
programming language, a member of the Datalog family of languages,
and relevant data are stored in a LogiQL database.

By the end of this chapter, you will have built a working LogiQL
 program. Your program will include constraints, derivation rules, and
fact assertions, and this chapter introduces you to all of these aspects.
The program is used to record and derive information of interest about the
British monarchy. In writing this program, you should obtain a feel for
the structure of LogiQL programs, the basic syntax of the language, and
how your program is processed. Later chapters will go into further detail
on these topics and introduce you to many other interesting and powerful
features of LogiQL.

UNIT 1.1: DATABASES, PREDICATES, AND FACTS
LogiQL is a programming language for accessing logic databases. The data
stored in these databases consist of predicates—named collections of related
facts. Each fact in a predicate relates the same fixed number of values. For
example, the fact bought("Jim","car") relates two string values,
"Jim" and "car" via the bought predicate. The number of values in
each fact of a predicate is that predicate’s arity. For example, bought has
arity two.

Answer to Exercise 6E 31
Answer to Exercise 7A 31
Answer to Exercise 7B 31
Answer to Exercise 7C 31
Answer to Exercise 7D 31
Answer to Exercise 7E 31
Answer to Exercise 7F 32
Answer to Exercise 8A 32
Answer to Exercise 8B 32
Answer to Exercise 8C 32
Answer to Exercise 8D 33
Answer to Exercise 8E 33
Answer to Exercise 8F 33
Answer to Exercise 8G 34

Basics ◾ 3

Predicates can be thought of as tables, where each row in the table is a
fact, and the number of columns in the table is the predicate’s arity. Each
column in the table plays a role in the predicate. For example, the first col-
umn in the bought table plays the purchaser role, and the second column
plays the product role. For each role, all data values in that column have
the same datatype.

There are many different kinds of predicates found in LogiQL
 programs. An entity predicate asserts the existence of a set of elements
in the problem domain that the program is modeling. The assertion of
an entity can be expressed using either of two other kinds of predicates.
A refmode predicate associates a unique primitive identifying value,
such as a string or a number, with each entity. For example, the vehicle
 identification number of a car serves to uniquely identify it. Alternatively,
a constructor predicate asserts the existence of an entity as a function of
a tuple of values.

Entity predicates often are accompanied by property predicates. A prop-
ery predicate associates a typed value with each entity. For example, an
 integer age predicate might be associated with a Person entity predicate
to hold data about people’s ages.

The most general class of predicate is the relation, which can be used
to hold information that associates a typed tuple of values. For example,
a relation might assert that particular university courses meet in partic-
ular rooms at particular times. A useful kind of relation comprises the
functional predicates. A functional predicate is a relation in which a subset
of the predicate’s roles serve as a key or index into the predicate’s facts.
Usually, values of the keys’ roles are used to look up the values of the other
roles in a predicate’s facts. Functional predicates have their own syntax
that makes apparent which values serve as the key.

File predicates are one means by which a program can perform input
and output (I/O) operations. An input file predicate provides predicate
access to the contents of an input file. That is, the facts in the predi-
cate correspond to the contents of the file. Similarly, an output file
 predicate ensures that the contents of an output file reflect the facts in
the predicate.

One final category of predicate contains the system or built-in predi-
cates. These predicates are provided by the LogiQL runtime engine
because they are generally useful, because the engine can compute them
more efficiently than can the program, or because they involve LogiQL’s
primitive datatypes.

4 ◾ LogiQL: A Query Language for Smart Databases

Exercise 1: For each of the following descriptions, select the type of predicate
most appropriate for expressing it:

1. the square root function a. constructor predicate
2. data imported from a spreadsheet application b. entity predicate
3. Social Security Numbers of U.S. citizens c. file predicate
4. purchases of cars by individuals d. functional predicate
5. the ages of famous generals when they died e. property predicate
6. descriptions of sports teams in terms of their cities

and leagues
f. refmode predicate

7. the states of Australia g. relation predicate
8. the year U.S. presidents were elected h. system predicate

UNIT 1.2: DECLARING ENTITY TYPES AND REFMODES
Many of the examples in this book are concerned with the British mon-
archy. In writing programs about a domain like this, you need to make
 decisions about the data that your program deals with. A key early choice
you should think about is which elements of the domain you express as
entities and which you express as values. Roughly speaking, a value is rep-
resented in LogiQL using a literal of a built-in datatype, such as a character
string (e.g., "Germany" or "Windsor"). An entity is a concrete object
or abstract concept, which you describe with one or more values (e.g., the
actual country Germany or the royal house Windsor). Also, most entities
can change their state over time. For example, a country may change its
average temperature over time, but the string “Germany” never changes,
even if the country changes its name.

To get started, let’s consider how to describe the key entities in the British
monarchy domain, the monarchs themselves. In LogiQL, you use an
entity type declaration to designate a set of similar entities. Declarations
specify what kinds of entities and facts are of interest and how they are
represented in the computer. For example, the Monarch entity type could
be declared as follows:

Monarch(m) -> . // Monarch is an entity type.

Syntactically, a LogiQL logic program comprises a set of clauses, and a dec-
laration is an example of one kind of clause called a constraint. A declaration
consists of two parts, separated by a right arrow. On the left is a predicate
name, giving the name of the entity type, Monarch. A predicate denotes

Basics ◾ 5

a named collection of facts. In this case, the facts indicate the monarchs we
refer to in our program.

Predicate names can be followed by a list of arguments, and in this case,
there is a single argument, denoted by the identifier m, which ranges over
individual Monarch entities. The combination of a predicate name and
its argument terms is called an atom (e.g., Monarch(m)).

In this example, there is nothing after the right arrow other than
a period, which signifies the end of the declaration. That is, there is no
information given about how monarch entities are represented in the
computer. In fact, the LogiQL engine will handle the internal representa-
tion automatically, keeping track of each Monarch entity subsequently
introduced. The text starting with the two slashes is a comment, which
does not have any effect on how the program is evaluated. In the examples,
comments are used to suggest how you can verbalize the commented pro-
gram text.

The above approach for describing monarchs is fairly abstract, and
you would normally want to provide some way for people to identify the
 monarchs rather than relying on artificial internal identifiers created by
the system. In database modeling, you would define a key in similar situa-
tions. In LogiQL, refmodes can be used in circumstances such as this, and
a refmode predicate is normally declared at the same time you declare an
entity type. For example, here is how you could declare monarchs that are
identified by their names:

Monarch(m), hasMonarchName(m:s) -> string(s).
/* Monarch is an entity type, and hasMonarchName is a
 refmode predicate for it. A monarch name is

 represented in the computer as a string. */

The text on the left of the arrow has several interesting aspects. First,
it contains two atoms, separated by a comma (',') denoting the logical
and operator. Formulas that connect parts by using and operators are
called conjunctions. Second, the two arguments of hasMonarchName,
m (the monarch entity) and s (the monarch name), are separated by a
colon. Third, each atom declares a predicate, and the two predicates
 hasMonarchName and Monarch share an argument, m. Together,
these syntactic elements indicate that a special kind of relationship exists
between monarchs and their names, in particular that each monarch
entity must have exactly one name and that no two monarchs have the
same name. Relationships like these not only express actual properties

6 ◾ LogiQL: A Query Language for Smart Databases

of the domain, but they also give the compiler advice helping it to detect
data typing violations and to improve performance.

In the hasMonarchName example, there is text to the right of the
arrow, string(s). The additional text tells us that s is represented in the
computer as a string.

Finally, the text following the declaration illustrates a multi-line comment.
Multi-line comments start with “/*”, span one or more lines, and end with
“*/”. This kind of comment enables you not only to provide multiple lines of
commentary but also to easily comment out a large block of program text.

Note that in this book, we conventionally use uppercase letters to begin
the names of entity types and lowercase letters to start the names of non-
entity predicates. Also, if the name of any identifier comprises multiple
words, we capitalize the first letter of all subsequent words. This conven-
tion is called camelCase. Be aware that the LogiQL compiler is sensitive to
case. That is, Monarch(m) is different from monarch(m), and you will
see error messages from the compiler if you inadvertently misuse the shift
key in typing an identifier’s name. These and other conventions are col-
lected in Appendix F.

Tip: When constructing a LogiQL program, for each different kind of
entity of interest in the domain, declare an entity type and a refmode.

Tip: Use comments to relate programming elements to the domain
 elements they represent.

Tip: LogiQL is case sensitive, so be sure to be consistent in your choice of
uppercase or lowercase letters when you write a predicate name.

Exercise 2: Members of the British monarchy belong to houses, such as the
current house of Windsor. Prepare a LogiQL declaration for the House
entity type and a corresponding refmode predicate, hasHouseName, for
the house’s name. Do this now before looking at the answer at the end of
the chapter.

UNIT 1.3: ENTERING FACTS
Now that we have introduced entity types and refmodes, we can populate
a database with actual facts about the British monarchy. For example,

Basics ◾ 7

we might want to add the fact that George VI was a monarch. We can
express this in LogiQL, as follows:

+Monarch(m), +hasMonarchName(m:"George VI").
// Add the fact that there is some monarch m,
// where m has the monarch name "George VI"
// (i.e. there is a monarch named "George VI").

Note the plus sign (‘+’) before each predicate name in the above conjunction.
This symbol is a delta modifier that indicates that the denoted fact should
be added to the set of asserted facts. The set of asserted facts for a program
is called its extensional database, often abbreviated as EDB.

There is a shorter way to express the existence of an entity that has a ref-
mode. Instead of the above conjunction, we may simply assert the following:

+Monarch("George VI").
// There is a monarch with the monarch name "George VI".

The LogiQL compiler reads the above and recognizes that Monarch's
 argument is a literal string rather than a variable. It also knows that
Monarch has a refmode that is represented by a string. It therefore
 realizes that a shortcut is being taken and substitutes the longer formula
given above.

Either of the above approaches asserts facts to the EDB. Those facts are
associated with the two predicates Monarch and hasMonarchName.
The former is a unary predicate that is populated by a set of invisible
 (system-provided) values that denote, within the context of that predicate,
the monarchs for whom a fact has been asserted. The latter is a binary pred-
icate relating the specific monarch-name strings with the system- provided
values. In both cases, the predicate is said to be an EDB predicate.

Tip: Enter facts into the EDB to express what you know about domain entities.

Exercise 3: Prepare LogiQL fact assertions for each of the houses in the
British monarchy (Stuart, Hanover, Saxe-Coburg and Gotha, and Windsor).

UNIT 1.4: EXPRESSING DOMAIN RELATIONSHIPS
WITH PREDICATES

We have seen in earlier units how to declare entities and to express simple
facts about them. Using LogiQL, it is possible to describe more general
relationships among the domain elements. For example, in the British

8 ◾ LogiQL: A Query Language for Smart Databases

monarchy domain, monarchs may be identified by their monarch name
(e.g., “Elizabeth II”), but they were also given names at birth, one of
which was chosen as the basis of their monarch name. As you can see
from Table 1.1, a monarch may have many given names, and the same
given name may be used by many monarchs. This association between
monarchs and given names is an example of a many-to-many relation-
ship. In order to express the facts represented in this table, it’s best to first
verbalize some of them in natural language. How would you verbalize the
information indicated by the predicate fragment shown in Table 1.2?

Because we are familiar with the domain, we can see that the two col-
umn entries are related to each other. Assuming that we are not interested
in the order of the given names, we might verbalize this connection as
follows:

The monarch named “George I” has the given names “George” and “Louis.”

Note, however, that the above sentence is really expressing two facts.
In general, you should ensure that the facts you assert are atomic, in the
sense that they cannot be expressed as conjunctions of smaller facts with-
out losing information. This makes it easier to avoid redundancy and

TABLE 1.1 Given Names of British Monarchs

Monarch Given Names
Anne Anne
George I George, Louis
George II George, Augustus
George III George, William, Frederick
George IV George, Augustus, Frederick
William IV William, Henry
Victoria Alexandrina, Victoria
Edward VII Albert, Edward
George V George, Frederick, Ernest, Albert
Edward VIII Edward, Albert, Christian, George,

Andrew, Patrick, David
George VI Albert, Frederick, Arthur, George
Elizabeth II Elizabeth, Alexandra, Mary

TABLE 1.2 Given Names for George I

Monarch Given Names
George I George, Louis

Basics ◾ 9

make changes later on. Because the above statement is compound rather
than atomic, it should be rephrased as the following two facts:

The monarch named “George I” has the given name “George.”

The monarch named “George I” has the given name “Louis.”

We may declare facts of this sort in the following way:

hasGivenName(m, gn) -> Monarch(m), string(gn).
// If m has the given name gn
// then m is a Monarch and gn is a string.

Note that when you declare a many-to-many predicate like hasGiven-
Name, its arguments are enclosed in parentheses and separated by a
comma, unlike refmode predicate declarations where the arguments are
separated by a colon. Informally, we sometimes refer to predicates like
hasGivenName as property predicates, to distinguish them from entity
predicates and refmode predicates. Intuitively, property predicates are
used to indicate properties of known entities.

Once we have declared the hasGivenName predicate, we can express
the facts about George I’s given name as follows:

+hasGivenName("George I", "George"),
 +hasGivenName("George I", "Louis").
// George I has given name George and
// George I has given name Louis.

Note that if you assert either of these facts about George I’s given names,
there is no need to explicitly assert the following fact, because it can be
inferred from the given name fact and the type declaration for the has-
GivenName predicate.

+Monarch("George I").

Tip: Express many-to-many relationships with many-to-many predicates.

Exercise 4: hasGivenName is an example of a many-to-many predicate.
This means both that monarchs may have many given names and that a
single given name may belong to many monarchs.

10 ◾ LogiQL: A Query Language for Smart Databases

Exercise 4A: Have a look at the table of given names at the start of this
unit, and determine which monarch has the most given names.

Exercise 4B: Have a look at the table of given names at the beginning of
this unit, and determine which given name belongs to the most monarchs.

UNIT 1.5: CONSTRAINING THE DATA
Unit 1.4 discussed how to declare predicates to model facts about the
British monarchy. The entity types were modeled as the unary predicates
Monarch(m) and House(h), and their instances were identified using the
refmode predicates hasMonarchName(m:s) and hasHouseName(h:s).
Relationships between monarchs and their given names were modeled using
the many-to-many predicate hasGivenName(m,gn). However, there are
restrictions on the above data that have not yet been expressed. For example,
each monarch must have at least one given name. If we were entering mon-
archy data ourselves or importing monarchy data from an external source,
we would want to make sure that the imported data does not violate this
restriction. In this unit we discuss how to explicitly represent such restric-
tions using constraints.

The following code shows how to declare the constraint that each
 monarch has a given name:

Monarch(m) -> hasGivenName(m, _).
// If m is a monarch then m has some given name.

Syntactically, a constraint looks like a declaration. The left-hand side indi-
cates the predicate being constrained, and the right-hand side indicates
the properties that facts about the corresponding entity must obey.

In this constraint, the anonymous variable, depicted by an underscore
(‘ _ ’), is read as “something.” We use the anonymous variable, because in
this example, we do not care what the given name is, only that it must exist.

The above constraint is an example of a simple mandatory role constraint,
since it declares that the role of having a given name is mandatory for each
monarch. We use the term role to mean a part played in a relationship. For
example, a binary predicate has two roles, one for each argument position.

With this constraint in place, if you try to add a monarch without any
given names you will get a constraint violation error, for example,

+Monarch("George I"). // Error!
// George I is a monarch, but no given name is declared.

Basics ◾ 11

Note that, in this example, even though King George I was given a monarch
name, there is no explicit given name asserted.

Tip: If you wish to place a specific restriction on how non-refmode predi-
cates may be populated with data, then declare a constraint to express that
restriction.

Tip: Refmode predicates are understood to be mandatory for their entity
type, so there is no need to separately code a mandatory role constraint
for them.

Tip: If you do not care what value a variable holds and it is only used once,
use the anonymous variable (‘ _ ’).

Exercise 5A: Assume that a predicate isOfHouse(m,h) is used to record
membership of monarchs in royal houses. Prepare a LogiQL mandatory role
constraint guaranteeing that each monarch is a member of some royal house.

Exercise 5B: Add a constraint to the isOfHouse(m,h) predicate to
ensure that each monarch belongs to at most one house. Hint 1: If two
facts both assert that a given monarch belonged to a house, the two houses
must be the same. Hint 2: To indicate that the values of two variables are
the same in LogiQL, the equals operator (‘=’) can be used. Note: In the next
unit, we discuss an easier way to express this constraint.

UNIT 1.6: DECLARING FUNCTIONAL PREDICATES
To date, there have been 12 British monarchs belonging to four houses.
Unit 1.2 discussed how to declare the Monarch and House entity types
and the refmode predicates used to identify their instances. Unit 1.3
showed how to add instance data about these entities. Exercises 5A and 5B
showed one way to relate the monarchs to their houses. In this unit we’ll
see an alternative way to declare a predicate that can express the house
membership facts. The predicate is written using LogiQL’s functional
notation.

As you can see from the data in Table 1.3, although many monarchs
may belong to the same house, each monarch may belong to only one
house. This association between monarchs and their houses is said to
be functional, because the house can be determined from the monarch.

12 ◾ LogiQL: A Query Language for Smart Databases

If a predicate is functional and not a refmode predicate, its arguments
should be declared using LogiQL’s functional notation, in which the argu-
ments that functionally determine the final argument (the keyspace) are
placed in square brackets, followed by the equals operator and the final
argument. Those arguments not in the keyspace of a predicate are said to
form its valuespace. In the case of the houseOf predicate, the first argu-
ment, m, a Monarch entity, is the only member of the keyspace, and the
result, h, a House entity, comprises the valuespace.

For example, the house membership predicate may be declared as
follows:

houseOf[m] = h -> Monarch(m), House(h).
// If the house of m is h
// then m is a monarch and h is a house.
// Each monarch m is of at most one house.

The square brackets in the above declaration indicate the functional nature
of the relationship between a monarch and his/her house. The use of the
word Of in the name of the predicate emphasizes the connection between
a monarch and that monarch’s house.

Similarly to how we asserted facts about entities in the previous unit,
we can assert facts for functional predicates. For example, we can indicate
that William IV belonged to the House of Hanover as follows:

+houseOf["William IV"] = "Hanover".
// William IV is of the house of Hanover.

TABLE 1.3 British Monarchy houseOf Predicate

Monarch House
Anne Stuart
George I Hanover
George II Hanover
George III Hanover
George IV Hanover
William IV Hanover
Victoria Hanover
Edward VII Saxe-Coburg and Gotha
George V Windsor
Edward VIII Windsor
George VI Windsor
Elizabeth II Windsor

Basics ◾ 13

Although the functional, square-bracket notation should be used in the
program code for the functional predicate, if you prefer you may use
the semantically equivalent parenthesis notation as an alternative when
 adding data, for example,

+houseOf("William IV", "Hanover").
// William IV is of the house of Hanover.

Contrast the functional approach described here to that of Exercises 5A
and 5B, in which house membership is declared using a parenthesized
argument list as follows:

isOfHouse(m, h) -> Monarch(m), House(h).
// If m is of house h
// then m is a monarch and h is a house.

Note that although isOfHouse and houseOf appear to serve the same
purpose, there is a subtle difference. Implicit in the monarch domain is the
constraint that no monarch can belong to two houses. To express this con-
straint with isOfHouse, we would have to explicitly add the following
constraint:

isOfHouse(m, h1), isOfHouse(m, h2) -> h1 = h2.
// If m is of house h1 and m is of house h2 then h1
// and h2 are the same.

With the functional notation, however, this constraint is implicit. That is,
because we used the functional notation, the predicate’s functional nature
is automatically declared.

Tip: Use functional notation to express functional associations.

Exercise 6: Consider another property of monarchs, their genders.
Table 1.4 expresses this information for the British monarchs, using the
gender codes “M” (for male) and “F” (for female).

Exercise 6A: Declare an entity predicate (Gender) and a refmode
predicate for it (hasGenderCode) that represent the gender code by
a string.

14 ◾ LogiQL: A Query Language for Smart Databases

Exercise 6B: Declare a constraint guaranteeing that each monarch is
either male or female. Hint 1: Recall from Unit 1.5 how to use anonymous
 variables to indicate that a constraint holds for all monarchs. Hint 2: In
situations like the above, where there are two possibilities, you can use
the inclusive-or operator, denoted by a semicolon (‘;’). Such situations are
called disjunctions.

Exercise 6C: Declare a functional predicate genderOf[m]=g reporting
the gender g for monarch m.

Exercise 6D: Provide explicit facts asserting that Anne I is a monarch with
monarch name “Anne I,” that there is a gender code “F,” and that Anne I
has that gender.

Exercise 6E: Use the shortened form of fact entry described in Unit 1.3 to
assert that George I is a male monarch.

UNIT 1.7: DECLARING DERIVATION RULES
In a typical application, some facts are simply asserted to be true, using the
delta modifiers presented in Unit 1.3, while other facts are computed by
applying a derivation rule to facts that are already known. For example, if
we assert the length and breadth of a window, we can derive the window’s
area by multiplying its length by its breadth.

In the current unit, we discuss how to express some basic derivation
rules in LogiQL. As a simple example, recall that earlier we represented

TABLE 1.4 Genders of British Monarchs

Monarch Gender
Anne Female (F)
George I Male (M)
George II M
George III M
George IV M
William IV M
Victoria F
Edward VII M
George V M
Edward VIII M
George VI M
Elizabeth II F

Basics ◾ 15

gender data for monarchs using the functional, binary predicate
genderOf[m]=g. Instead, we might have declared unary predicates to
express the same information as follows:

isMale(m) -> Monarch(m).
// If m is male then m is a monarch.

isFemale(m) -> Monarch(m).
// If m is female then m is a monarch.

Choosing this approach has a subtle implication. Recall that genderOf
is a functional predicate. This means that for each value of argument m,
there can be at most one g such that genderOf[m]=g. In other words, no
monarch can have two genders.

Because isMale and isFemale are separate, unary predicates, we
have to explicitly eliminate the possibility of someone being both male
and female at the same time. We can indicate this kind of mutual exclu-
sion by using an exclusion constraint. Here is one way to express this:

isMale(m) -> !isFemale(m).
// If m is male then m is not female.

Note the use of the exclamation mark (‘!’) for the logical not operator.
Note also that there is no need to add the following constraint, since it is
implied by the above constraint:

isFemale(m) -> !isMale(m).
// If m is female then m is not male.

Because the same information is being expressed by genderOf and the
new predicates, we should be able to derive isMale and isFemale facts
from genderOf data. For example, if we assert the following fact:

+genderOf["Edward VII"] = "M".

we should be able to derive the fact

isMale("Edward VII").

To do this we can declare a simple rule that can perform this kind of deri-
vation for all the male gender facts as follows:

isMale(m) <- genderOf[m] = "M".
// m is male if m has the gender with gender code "M".

16 ◾ LogiQL: A Query Language for Smart Databases

Note that the direction of the arrow in rules is opposite to what we have
seen before. An arrow directed to the right is used in constraints, whether
its purpose is to declare a predicate or to limit the facts that can populate
one. To visually distinguish rules, their arrows point leftward. Both arrows
indicate a conditional dependency that may be expressed using a phrase
containing the words “if” and “then.” That is, “if” the formula that comes
after the arrow is true, “then” the formula before the arrow will also be true.

The formula on the left-hand side of “<-” is called the rule head, and
the formula on the right-hand side of “<-” is called the rule body. The rule
specifies the following: for each value of m where genderOf[m] has the
value “M”, the following fact is derived: isMale(m).

From a programming point of view, the above rule searches for gen-
derOf facts having the string “M” in the value role. For each such fact
found, a corresponding isMale fact is derived. Predicates computed from
rules, like isMale, which are explicity asserted are called IDB predicates
to distinguish them from EDB predicates like genderOf.

A more complex derivation rule can be demonstrated using the parent-
hood graph shown in Figure 1.1. If a monarch is a parent of another mon-
arch, this is shown as a line connecting the parent to the child below it.

Because this graph is confined to the 12 British monarchs, at most one
parent is shown for each monarch. We can assert the eight parenthood
facts conveyed by this graph using the functional predicate parentOf,
which may be declared as follows:

parentOf[m1] = m2 -> Monarch(m1), Monarch(m2).
// If the parent of m1 is m2, then m1 and m2 are
// monarchs.

George III

George V

VictoriaGeorge I

George II George IV William IV Edward VII

Edward VIII George VI

Elizabeth II

Anne

FIGURE 1.1 Parenthood relationship among British monarchs.

Basics ◾ 17

Note that in a wider domain where both of a person’s parents may be
recorded, parenthood would instead be modeled as an m:n predicate such
as hasParent(p1,p2) or isParentOf(p1,p2).

Now consider a rule to derive the sibling relationship. Two different people
are siblings of each other if they share a parent. For example, George IV and
William IV are siblings. Because it is possible for a monarch to have more
than one sibling monarch, we express the siblinghood relationship as an m:n
predicate rather than as a functional predicate, using the following rule:

isSiblingOf(m1, m2) -> Monarch(m1), Monarch(m2).
isSi blingOf(m1, m2) <- parentOf[m1] = m3,

parentOf[m2] = m3, m1 ! = m2.
// m1 is a sibling of m2 if there is some m3 such that
// m1 and m2 have m3 as a parent, and m1 is not the
// same as m2.

Note that in this rule, the rule body introduces a new variable, m3, that
does not occur in the head of the rule. Occurrences of variables in the
rule body that do not appear in the rule head are treated specially. In par-
ticular, variables that occur only in the body are assumed to have at least
one existing instance. In this example, m3 is such a variable. It is as if the
phrase “there is some m3 such that” is inserted before the conjunction of
three conditions in the rule body.

In the above example, inequality is expressed using the not-equals
operator (‘!=’). If we omitted the final check that uses it (m1 != m2), then
each monarch would be his/her own sibling!

One other thing to observe about the isSiblingOf example is that it
does not include atoms, such as Monarch(m1), limiting isSibling Of's
arguments. In this case, the LogiQL compiler is able to infer the types of
m1 and m2 because of their use in the parentOf atoms in the rule’s body.
The compiler is able to make such inferences for derivation rules in most
cases. However, if you see an unexpected error message from the compiler,
it is always okay to include an explicit mention of the type for the arguments
of the predicate in the derivation rule.

One final example shows how a derivation rule may use an IDB predicate
in its body. The following rule invokes two derived predicates to derive a third:

isBrotherOf(m1, m2) <- isSiblingOf(m1, m2), isMale(m1).
// m1 is a brother of m2 if m1 is a sibling of m2 and
// m1 is male.

18 ◾ LogiQL: A Query Language for Smart Databases

Recall that for any given application domain, the set of facts that are simply
asserted is known as the extensional database (EDB). In contrast, the set
of facts that are inferred from other facts via derivation rules is called the
intensional database (IDB). Whereas asserted facts must be explicitly man-
aged (i.e., retracted, updated, etc.) by the programmer, derivation rules are
automatically invoked whenever a workspace change affects predicates in
the rules’ bodies.

Tip: Use derivation rules to express computed domain relationships.

Exercise 7A: Compose LogiQL fact assertions to express the parenthood
data illustrated in Figure 1.1.

Exercise 7B: Write a derivation rule to derive isFemale from genderOf.

Exercise 7C: Write a derivation rule to derive fatherOf[m1]=m2.

Exercise 7D: Write a derivation rule to derive isSisterOf(m1,m2).

Exercise 7E: Write a derivation rule for a predicate named hasNoMon-
archSibling to derive those monarchs who have no monarchs as sib-
lings. Use the parenthood data you entered for Exercise 6A to determine
which monarchs satisfy this rule.

Exercise 7F: For which pairs of monarchs is the predicate isBrotherOf
true?

UNIT 1.8: QUERYING A WORKSPACE
Once you have written your program, loaded it into a workspace, and
entered relevant facts, you will want to see the results. The lb com-
mand, described more completely in Appendix A, provides several ways
for accessing this information. For example, the following lb command
prints out the contents of the predicateName predicate:

lb print workspaceName predicateName
Print out the current contents of the predicate
named in the workspace named.

Sometimes, we may want to find out about information in the workspace
that relates to more than one predicate. You can do this by issuing a query.

Basics ◾ 19

A query to lb makes use of the exec option, but instead of asking lb to
execute the contents of a file, you can supply a LogiQL rule. In this case,
the rule you provide indicates that a new predicate, occurring on the left-
hand side of the arrow, should be populated with all facts satisfying the
right-hand side of the rule.

Conventionally, the predicate on the left-hand side is an anonymous
predicate, designated with an underscore (‘ _ ’), optionally followed by
other characters allowed in an identifier. Note that this use of underscore
indicates an anonymous predicate, where earlier we used it to indicate an
anonymous variable. Because predicates are followed by arguments, you
can always tell which use of underscore is intended.

Here is how lb can be used to express a query:

lb e xec workspaceName '_(args) <-
 predicateName(args, "someString").'

Using the workspace named workspaceName, locate
those facts in the predicate named predicateName
whose final role is filled with the literal value
"someString" and print out the corresponding
values that fill the other roles.

Tip: Use the ‘.logic’ filename extension to name your LogiQL program
and fact files.

Tip: Use an anonymous predicate to construct workspace queries.

Exercise 8A: Create a new workspace named ws. Hint: Refer to Appendix A
if needed.

Exercise 8B: Add the rules in the file base.logic to this workspace.
The file contains the rules we have seen thus far in the chapter.

Exercise 8C: Add the facts in the baseData.logic to this workspace.
The file contains the facts we have seen thus far in the chapter.

Exercise 8D: Use lb to print out the names of the houses in the British
monarchy.

Exercise 8E: Execute a query on this workspace to list each female mon-
arch and her royal house.

20 ◾ LogiQL: A Query Language for Smart Databases

Exercise 8F: Execute a query on this workspace to list each monarch who
has either “George” and/or “William,” but not “Albert” as a given name.

Exercise 8G: Execute a query on this workspace to list each monarch who
has at least three given names.

UNIT 1.9: CONSOLIDATION EXERCISE 1
Thus far, you have been introduced to LogiQL via a series of small examples—
individual declarations, facts, constraints, rules, and queries—but applica-
tions are not only larger than this, their pieces are more interdependent. This
unit asks you to integrate what you have learned so far to produce a compre-
hensive program for providing information about the British monarchy.

The exercise begins with what you have done already. The file base.
logic contains the declarations, constraints, and rules that were intro-
duced during the course of Chapter 1; the file baseData.logic con-
tains the facts. In this exercise you will add to these files using a text editor
and test them using lb, as described in Unit 1.8 and Appendix A. At this
point, please create a new workspace called ws, load in base.logic, and
execute baseData.logic.

During the course of this exercise, you will be asked to prepare new
 declarations, rules, constraints, and facts. You should place these into appro-
priately named files using a text editor and then use lb to include them in the
workspace you have created. You should use lb addblock for new rules
and constraints, and for new facts you should use lb exec. Depending on
the specific task you are asked to perform, you may need to recreate your
workspace and reload your code. You should be particularly careful to do
this if your previous test resulted in an error. Another situation to be aware of
is when you add a constraint to the program installed in your workspace that
requires certain facts to pertain, but you have not yet asserted those facts.

PART 1: COUNTRY OF BIRTH
The first extension that we would like to consider is information about the
countries in which the British monarchs were born: It turns out that two of
them were actually born in Germany! The relevant data is shown in Table 1.5.

Q1a: Extend the program in base.logic by declaring the entity predi-
cate Country(c), the refmode predicate hasCountryCode(c:cc),
and the property predicate birthCountryOf[m]=c to enable facts
to be stored about monarch birth countries. Also include a constraint to

Basics ◾ 21

ensure that each monarch was born in some country. The answer can be
found in the file Q1Answera.logic.

Q1b: Use lb to add the information in the above table as new facts to
baseData.logic. The answer can be found in file Q1Answerb.logic.

Q1c: You should now be able to write a query to determine which monarchs
were not born in Britain. The answers can be found in file Q1Answerc.
logic.

PART 2: BIRTH AND DEATH DATES
More interesting and more ambitious than incorporating monarchs’ birth
countries is keeping track of important dates for them, such as their birth
and death dates. Table 1.6 (available in birthDeathData.logic) pro-
vides this data for the British monarchs.

Using the techniques that we have already seen, we could encode these
dates as strings. This approach would prove difficult, however, once we
started doing computations on the dates, such as determining how old the
monarchs were when they died. Fortunately LogiQL has a way around this
difficulty using the datetime primitive datatype.

Using datetime, we can declare a predicate expressing the informa-
tion in the second column of the table as follows:

birthdateOf[m] = d -> Monarch(m), datetime(d).
// If m was born on d then m is a monarch
// and d is a datetime value.

TABLE 1.5 Birth Countries of British Monarchs

Monarch Birth Country
Anne Great Britain (GB)
George I Germany (DE)
George II DE
George III GB
George IV GB
William IV GB
Victoria GB
Edward VII GB
George V GB
Edward VIII GB
George VI GB
Elizabeth II GB

22 ◾ LogiQL: A Query Language for Smart Databases

Here is a corresponding constraint that guarantees that every monarch
has a birthday:

Monarch(m) -> birthdateOf[m] = _.

Additionally, we can assert Anne’s date of birth as follows:

+birthdateOf["Anne"] = #02/06/1665#.
// Anne was born on 6 February, 1665.

Note that literal datetime values are surrounded by hash symbols (‘#’).
In particular, in this example, dates are expressed using the format #mm/
dd/yyyy#, where mm is the month number, dd is the day number, and
yyyy is the year number. Be aware that the order of these three values is
different from the order in which they were presented in the above table.

If you run the above code, you may see a warning message from the
LogiQL compiler indicating that timezone information is missing from
the datetime literals. If you wish to suppress the display of this warning,
include the following line of code in your source file:

la ng:compiler:disableWarning:DATETIME_
TIMEZONE[] = true.

Q2a: Declare a predicate deathdateOf indicating the datetime of
a monarch’s death, and assert Anne’s date of death. The answer can be
found in the file Q2Answera.logic.

TABLE 1.6 Birth and Death Dates of British Monarchs

Monarch Born Died
Anne February 6, 1665 August 1, 1714
George I May 28, 1660 June 11, 1727
George II October 30, 1683 October 25, 1760
George III June 4, 1738 January 29, 1820
George IV August 12, 1762 June 26, 1830
William IV August 1, 1765 June 20, 1837
Victoria May 24, 1819 January 22, 1901
Edward VII November 9, 1841 May 6, 1910
George V June 3, 1865 January 20, 1936
Edward VIII June 23, 1894 May 28, 1972
George VI December 14, 1895 February 6, 1952
Elizabeth II April 21, 1926 —

Basics ◾ 23

Q2b: Using the less than or equal to comparison operator (‘<= ’), add a
 constraint to require that a monarch’s death date must come no earlier
than the monarch’s birth date. (Note that from here on out, we will not
be specifically reminding you to run lb, but good coding practice says
you should always test your results.) The answers can be found in the file
Q2Answerb.logic.

Note that in Q2, you were not asked to provide a constraint guaranteeing
that each monarch has a date of death. Can you see why doing so would
be a problem?

Of course, it’s because Queen Elizabeth II is very much alive!
Given this difference between the birthdateOf and deathdateOf

predicates, we might like to know, for a given monarch, if that monarch
is dead.

Q3: Write a derivation rule, isDeadMonarch, to determine whether a
monarch is dead. The answer can be found in Q3Answer.logic.

If we can determine if a monarch is dead using isDeadMonarch, it is
natural to ask the inverse question—is a monarch alive? We can do this
as follows:

isLiveMonarch(m) <- Monarch(m), !isDeadMonarch(m).
// m is a live monarch if m is a monarch and m is not
// dead.

Would it be acceptable to shorten this rule as follows?

isLiveMonarch(m) <- !isDeadMonarch(m).

No! This shorter rule implies that anything that does not have a death date
is a live monarch. For example, the house of Tudor would be a live mon-
arch. So you need to be careful when using negation to properly constrain
the objects under discussion to the entity types that you intend.

PART 3: AGE AT DEATH
As a more complex derivation example, we may compute the age at death
for monarchs from their dates of birth and death. The derivation rule for
death ages is complicated by the need to consider not just the year, but
the month and day values. Think for a moment how you would go about
expressing this rule.

24 ◾ LogiQL: A Query Language for Smart Databases

As you probably determined, you can derive the death age by subtracting
the birth date from the death date, extracting the number of years, and
then compensating for monarchs who died during a year before having
had their birthday that year.

Table 1.7 illustrates the possibilities.
Note that Anne was born in February and died in a later month (August).

Her age at death can be easily computed by subtracting her birth year, 1665,
from her death year, 1714, resulting in an age at death of 49. Edward VII,
however, died in May, well before his birth month of November. If we tried
to simply subtract 1841 from 1910, we would erroneously compute 69.
Instead we have to recognize this situation and compensate by subtracting
an additional year.

The problem is even worse than indicated so far. Consider the data for
George II shown in Table 1.8.

Note that he was born and died in the same month, October. Hence,
we have to look to see when in the month these two events took place. Of
course, we could go further and look at the time of day or even the time
zone in which the monarchs were born and died. But, for this exercise, we
will be satisfied with the above degree of precision.

To perform the age-at-death computation, we have to be able to extract
the month and day information from datetime values. Fortunately,
LogiQL has built-in functions for working with datetime data. For
example, the datetime:part function can be used to extract the day,
month, and year parts of a date, and the datetime:offset function
may be used to return the difference between two dates in a specified dura-
tion unit. By the way, the names of these two functions share a common
prefix, "datetime:", suggesting that the two functions are members of
a group of related functions. Note also that this use of the colon is distinct
from its use declaring refmode predicates that we saw in Unit 1.2.

TABLE 1.8 Age at Death of George II

Monarch Born Died Age at Death
George II October 30, 1683 October 25, 1760 76

TABLE 1.7 Ages at Death of British Monarchs

Monarch Born Died Age at Death
Anne February 6, 1665 August 1, 1714 49
Edward VII November 9, 1841 May 6, 1910 68

Basics ◾ 25

While the whole process of computing the age at death could be
 formulated as a single derivation rule, the solution is easier to construct
and understand if we break the problem into smaller steps, using inter-
mediate predicates to help with deriving later ones. Hence, we begin by
extracting the month-of-the-year information from a datetime value.
In particular, here is a derivation rule for determining the number (from
1 to 12) of the month in which a person was born:

birthMonthNrOf[m] = n <-
 birthdateOf[m] = d,
 datetime:part[d, "month"] = n.
// The birth month number of monarch m is n if m was
// born on the date d, and the month part of d is n.

The datetime:part function has two arguments. The first is a date-
time value and the second is a string, in this case “month,” specifying
which part of the datetime value is to be returned.

Q4: Formulate derivation rules for deathMonthNrOf, birthDayNrOf,
and deathDayNrOf. Hint: For the last two, you should use "day" as
the second argument to datetime:part. The answers can be found in
Q4Answer.logic.

Our next step is to determine whether a person’s calendar day of death
occurs before his/her calendar day of birth. This is true if one of the follow-
ing conditions holds: (a) the death month number precedes the birth month
number (like George IV); (b) the death and birth month numbers match,
but the death day number precedes the birth day number (like George II).

We can express these conditions using our newly defined rules as follows:

hasDeathdayBeforeBirthday(m) <-
 (deathMonthNrOf[m] < birthMonthNrOf[m]) ;
 ((deathMonthNrOf[m] = birthMonthNrOf[m]),
 (deathDayNrOf[m] < birthDayNrOf[m])).
// Monarch m has deathday before birthday if either
// m's deathmonth number is less than m's birthmonth
// number or the two numbers are equal and m's
// deathday number is less than m's birthday number.

Note the parentheses on the right-hand side of the above rule. They are used
to ensure that the two requirements of the second alternative are both met.

26 ◾ LogiQL: A Query Language for Smart Databases

We can now make use of the datetime:offset function to estimate
the age at death. This function takes three arguments. The first two are
datetime values, and the third is a string indicating the unit of dura-
tion we are interested in. In our case, this is "years". The result is an
estimate, however, because we may have to adjust the value if indicated by
hasDeathdayBeforeBirthday.

approxDeathAgeOf[m] = n <-
 birthdateOf[m] = d1, deathdateOf[m] = d2,
 datetime:offset[d1, d2, "years"] = n.
// Monarch m's approximate death age is n if m was born
// on datetime d1 and died on datetime d2, and the
// offset between these two values was n years.

We can express the derivation rule that computes the age at death using
approxDeathAgeOf and adjusting the computed value, if necessary,
by hasDeathdayBeforeBirthday. Specifically, if a person’s calen-
dar day of death is before his/her calendar day of birth, then the death
age is the approximate age minus one year. Otherwise, the death age is
the approximate death age. This rule has the form if p then q else r, where
p, q, and r are assertions. In LogiQL, such rules are expressed in the fol-
lowing way:

q <- p. // q if p (i.e., if p then q)
r <- !p. // r if not p (i.e., if not p then r).

Applying that rewrite for the current case, we finalize the computation by
the following two rules:

deathAgeOf[p] = n - 1 <-
 approxDeathAgeOf[p] = n,
 hasDeathdayBeforeBirthday(p).
// person p has an age at death equal to n-1
// if p's approximate death age is equal to
// n, and p's deathday is before p's birthday

deathAgeOf[p] = n <-
 approxDeathAgeOf[p] = n,
 !hasDeathdayBeforeBirthday(p).
// person p has an age at death equal to n
// if p's approximate death age is equal to

Basics ◾ 27

// n, and it is not the case that p's deathday is
// before p's birthday.

Q5: The rules and constraints we have developed to this point in the
exercise are available in file birthDeath.logic. The corresponding
data for the British monarchs is available in the file birthDeathData.
logic. Use lb to add the former and execute the latter. Then construct
an lb query to display the age-at-death values. The answers can be seen in
file Q5Answer.logic.

PART 4: REIGNS AND ANCESTRY
To complete this exercise, you are asked to answer the following questions
on your own.

Q6a: Declare the predicates reignStartOf[m] = d and reignEndOf[m]
= d to store facts about the start and end of monarch reigns.

Q6b: Add a constraint to ensure that each monarch started some reign.

Q6c: Add a constraint to ensure that no reign ended before it began.

Q6d: Add a single constraint to ensure both that no dead monarch reigned
before he/she was born and that no monarch reigned after he/she died.
The answers can be found in file Q6Answer.logic. The data from the
table itself can be found in the file reignData.logic.

Q7a: Add a rule to derive the predicate daughterOf[m1]=m2 to indi-
cate that monarch m2 is a daughter of monarch m1. Note that in a wider
domain where a monarch might have multiple daughters who are mon-
archs, a functional predicate would not work.

Q7b: Add a rule to derive the predicate isGrandParentOf(m1,m2) to
indicate that monarch m1 is a grandparent of monarch m2.

Q7c: Enter a query to print out the isGrandParentOf predicate.
The answers can be found in file Q7Answer.logic.

Q8: Write a query to list each monarch who is the parent of at least two
monarchs. The answer can be found in file Q8Answer.logic.

28 ◾ LogiQL: A Query Language for Smart Databases

Q9: Add a rule to derive the predicate isFirst(m) indicating who is the
first monarch. After installing, query this predicate to display its result.
Hint: LogiQL does not allow rule bodies to include negated conjunctions
if one of the conjuncts is the anonymous variable. So first declare the rule
isLater(m) to derive the monarchs who reigned later (i.e., after the first
monarch), then use that rule to help you derive isFirst(m). The answer
can be found in file Q9Answer.logic.

Basics ◾ 29

ANSWERS TO EXERCISES

Answers to Exercise 1:

 1. h—provided by the built-in math library

 2. c—file predicates import data from external files

 3. f—how person entities are uniquely referred to

 4. e—a relation between car entities and person entities

 5. d—each general had exactly one age at death; hence, a functional
predicate is appropriate

 6. a—“the Detroit National Football league team” is an implicit way of
describing a team entity

 7. b—one entity for each state

 8. g—a property of each president; note that some presidents were
elected more than once

Answer to Exercise 2:

 House(h), hasHouseName(h:s) -> string(s).
 /* House is an entity type, and hasHouseName is a
 refmode predicate for it. House names are

represented in the computer as strings. */

Answer to Exercise 3:

 +House("Stuart"). // "Stuart" is the name of a house
 +Hou se("Hanover"). // "Hanover" is the name of a

house
 +House("Saxe-Coburg and Gotha").
 // "Saxe-Coburg and Gotha" is the name of a house
 +Hou se("Windsor"). // "Windsor" is the name of a

house.

Answer to Exercise 4A:

Edward VIII had seven given names!

Answer to Exercise 4B:

"George" (the given name George is shared by seven monarchs).

30 ◾ LogiQL: A Query Language for Smart Databases

Answer to Exercise 5A:

 Monarch(m) -> isOfHouse(m, _).
 // If m is a monarch then m is of some house.

Answer to Exercise 5B:

 isOfHouse(m, h1), isOfHouse(m, h2) -> h1 = h2.
 // Each monarch belongs to at most one house.

Answer to Exercise 6A:

 Gender(g), hasGenderCode(g:gc) -> string(gc).
 // g is a gender, identified by its gender code.
 // Gender codes are stored as strings.

Answer to Exercise 6B:

 hasGenderCode(_:gc) -> gc = "M" ; gc = "F".
 // If some gender has a gender code
 // then that code is either "M" or "F".

This kind of constraint is called a value constraint because it constrains
the possible values used for the specified role. Here the anonymous variable
is used to indicate any arbitrary gender. Note the use of the semicolon (‘;’)
for the inclusive-or operator.

Answer to Exercise 6C:

 genderOf[m] = g -> Monarch(m), Gender(g).
 // If m has gender g, then m is a monarch and g is a
// gender.

 // Each monarch has at most one gender.

Answer to Exercise 6D:

 +Monarch(m), +hasMonarchName(m:"Anne"), +Gender(g),
 +hasGenderCode(g:"F"), +genderOf[m] = g.
 // "Anne" is a monarchName for Monarch m.
 // "F" is a genderCode for a Gender g.
 // Monarch m has gender g.

Basics ◾ 31

Answer to Exercise 6E:

 +genderOf["George I"] = "M".
 // George I has gender with genderCode "M".

Answer to Exercise 7A:

 +parentOf["George II"] = "George I".
 +parentOf["George IV"] = "George III".
 +parentOf["William IV"] = "George III".
 +parentOf["Edward VII"] = "Victoria".
 +parentOf["George V"] = "Edward VII".
 +parentOf["Edward VIII"] = "George V".
 +parentOf["George VI"] = "George V".
 +parentOf["Elizabeth II"] = "George VI".

Answer to Exercise 7B:

 isFemale(m) <- genderOf[m] = "F".
 // m is female if m has the gender with gender code
 // "F".

Answer to Exercise 7C:

 fatherOf[m1] = m2 -> Monarch(m1), Monarch(m2).
 fatherOf[m1] = m2 <- parentOf[m1] = m2, isMale(m2).
 // The father of m1 is m2 if the parent of m1 is m2
 // and m2 is male.

Answer to Exercise 7D:

 isSisterOf(m1, m2) -> Monarch(m1), Monarch(m2).
 isSi sterOf(m1, m2) <- isSiblingOf(m1, m2),

isFemale(m1).
 // m1 is a sister of m2 if m1 is a sibling of m2,
 // and m1 is female.

Answer to Exercise 7E:

 hasNoMonarchSibling(m) -> Monarch(m).
 has NoMonarchSibling(m) <- Monarch(m),

!isSiblingOf(m, _).
 // m has no monarch as a sibling if

32 ◾ LogiQL: A Query Language for Smart Databases

 // m is a monarch and it is not the case that
 // m is the sibling of another monarch.

Why do not we also have to say that !isSiblingOf(_, m)?
The following monarchs have no monarchs as siblings:

Elizabeth II

George V

Edward VII

Victoria

George III

George II

George I

Why isn’t Anne on this list? How would you fix the problem?

Answer to Exercise 7F:

 "George IV", "William IV"
 "Edward VIII", "George VI"
 "William IV", "George IV"
 "George VI", "Edward VIII"

Answer to Exercise 8A:

 lb create ws
 # Create a new workspace with name "ws".

Answer to Exercise 8B:

 lb addblock –f base.logic ws
 # Add the program in file base.logic to the
 # workspace ws.

Answer to Exercise 8C:

 lb exec –f baseData.logic ws
 # Add facts from the file baseData.logic to the
workspace ws.

Basics ◾ 33

Answer to Exercise 8D:

 lb print ws House
 # Print out the current contents of the predicate
 # named House in the workspace ws.

Results:

 Windsor
 Saxe-Coburg and Gotha
 Hanover
 Stuart

Answer to Exercise 8E:

 lb exec ws '_(m, h) <- isFemale(m), houseOf[m] = h.'
 # Retrieve names and houses of all female monarchs
 # from workspace ws.

Results:

 Elizabeth II, Windsor
 Victoria, Hanover
 Anne, Stuart

Answer to Exercise 8F:

 lb exec ws '
 _(m) <-
 (hasGivenName(m, "George") ; hasGivenName(m,

"William")),
 !hasGivenName(m, "Albert").
 '
 # Retrieve names of monarchs with given names "George"
 # or "William" but not "Albert" from workspace ws.

Note that the parentheses are required to group the two atoms in the
disjunction.

Results:

 William IV
 George IV

34 ◾ LogiQL: A Query Language for Smart Databases

 George III
 George II
 George I

Answer to Exercise 8G:

lb exec ws '
_(m) <-
 hasGivenName(m, n1),
 hasGivenName(m, n2),
 hasGivenName(m, n3),
 n1 ! = n2, n1 ! = n3, n2 ! = n3.
'
 # Using the workspace ws, retrieve the names of
 # monarchs with at least three given names.

Results:

 Elizabeth II
 George VI
 Edward VIII
 George V
 George IV
 George III

What would happen if the tests on the last line of the query were left off?

