Numerical experiments on plasma focus neutron yield versus pressure compared with laboratory experiments

S Lee¹,²,³, S H Saw¹,², L Soto¹,⁴,⁵, S V Springham³ and S P Moo¹

¹ Institute for Plasma Focus Studies, 32 Oakpark Drive, Chadstone, VIC3148, Australia
² INTI University College, 71800 Nilai, Malaysia
³ National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore
⁴ Comisión Chilena de Energía Nuclear, Casilla 188-D, Santiago, Chile
⁵ Center for Research and Applications in Plasma Physics and Pulsed Power, P², Santiago-Curicó, Chile

E-mail: leesing@optusnet.com.au

Received 21 February 2009, in final form 16 April 2009
Published 19 May 2009
Online at stacks.iop.org/PPCF/51/075006

Abstract
Published literature shows that the neutron yield of the plasma focus has been modeled in two papers using a thermonuclear mechanism. However, it is more widely held that plasma focus neutrons are produced mainly by non-thermalized mechanisms such as beam–target. Moreover, these papers use several parameters which are adjusted for each machine until the computed neutron yield Y_n data agree with measured Y_n data. For this paper numerical experiments are carried out, using the Lee model code, incorporating a beam–target mechanism to compute the Y_n versus pressure data of plasma focus devices PF-400 J and FN-II. The Lee model code is first configured for each of these two machines by fitting the computed current waveform against a measured current waveform. Thereafter all results are computed without adjusting any parameters. Computed results of Y_n versus pressure for each device are compared with the measured Y_n versus pressure data. The comparison shows degrees of agreement between the laboratory measurements and the computed results.

1. Introduction
The dense plasma focus produces copious multi-radiation, including a wide spectrum of photons and particles, which is the subject of many studies and applications. From many devices and experiments, a large array of data and information leading to interesting discussions. For example, to explain the observed fast particles with energies up to mega-electron volt emitted from devices operating at tens of kilovolts, mechanisms such