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Abstract 

 

As the world’s need for clean water keeps rising and pollution continues to worsen, there is a 

growing push for better wastewater treatment systems. Treatment plants (WWTPs) are essential 

not only for protecting public health but also for keeping the environment safe. Still, running these 

plants is not easy because the quality of incoming water often changes, the biological processes 

are complex, and regulations are very strict. Traditional methods usually fall short, being slow and 

inefficient. Newer approaches, like machine learning (ML) and artificial intelligence (AI), bring 

fresh opportunities by making it possible to predict issues in real time, spot irregularities, improve 

processes, and support better decision-making. This literature review brings together findings from 

five key research papers and over 40 additional studies published between 2018 and 2025. The 

review highlights a significant shift towards advanced deep learning (e.g., LSTM, GRU) and 

ensemble models, demonstrating superior performance in capturing complex, time-dependent 

data. Key trends include multi-source data fusion, expanding focus on effluent quality prediction 

for regulatory compliance, nutrient removal, energy optimization, and predictive maintenance. 

Despite these advancements, persistent challenges include data quality and availability, model 

interpretability ("black box" nature), generalizability across diverse WWTPs, and integration with 

existing infrastructure. Future research directions emphasize hybrid and physics-informed models, 

Explainable AI (XAI), Digital Twins, Reinforcement Learning for optimal control, and fostering 

interdisciplinary collaboration. Ultimately, ML/AI holds immense potential to revolutionize 

wastewater management, transitioning from reactive to proactive strategies, contingent on 

addressing these critical limitations for widespread and sustainable adoption. 
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Introduction 

 

Efficient and sustainable use of water resources has become one of the major global issues 

of this century. With rapid urbanization, rising population, and industrial development, the demand 

for reliable wastewater treatment is greater than ever(Malviya & Jaspal, 2021; Wang et al., 2024). 

Wastewater treatment plants (WWTPs) serve as critical infrastructure to protect both human health 

and ecosystems by eliminating pollutants from municipal and industrial wastewater before it is 

released or reused. However, operating these plants is highly complex because the processes are 

dynamic, non-linear, and affected by numerous biological, chemical, and physical factors, which 

can vary daily, seasonally, and annually(Inbar & Avisar, 2024; Malviya & Jaspal, 2021; Zamfir et 

al., 2025). 

Traditionally, WWTPs depended on empirical methods and offline laboratory testing. This 

approach is typically slow, resource-heavy, and costly, since important water quality indicators 

like biochemical oxygen demand (BOD₅), chemical oxygen demand (COD), and total suspended 

solids (TSS) often take several days to analyze. The delay in results prevents operators from 

making timely, data-informed decisions. As a consequence, plants may face higher operational 

expenses, greater energy use, and in some cases, difficulties in meeting strict environmental 

standards(Inbar & Avisar, 2024; Zamfir et al., 2025). Conventional systems frequently fail to keep 

pace with modern pollutants and variable influent quality. To overcome these limitations, 

advanced technologies such as artificial intelligence (AI), machine learning (ML), and deep 

learning (DL) are increasingly being recognized as game-changing tools for the wastewater 

treatment sector(Malviya & Jaspal, 2021; Yang et al., 2024). These data-driven methods, often 

described as “soft sensors” or “virtual instruments,” make use of large collections of past and live 

information from online sensors to create predictive models of key effluent parameters. In contrast 

to traditional mechanistic approaches built on first-principle equations and often restricted by their 

assumptions and complexity, AI models can reveal complex, non-linear connections among 

different process variables without the need for a detailed grasp of the underlying physics. This 

capability supports continuous monitoring, process optimization, and early alerts, helping 

operators shift from reactive control to a proactive management strategy(Chen & Kao, 2025; 

Malviya & Jaspal, 2021; Yang et al., 2024). The purpose of this paper is to provide a 

comprehensive and expert-level review of AI applications in WWTPs. It synthesizes recent 

advancements in predictive modeling methodologies, critically analyzes the performance of 

various algorithms, and discusses key strategies for overcoming persistent implementation 

challenges. The report will explore emerging paradigms such as Digital Twins and Explainable 

AI, and finally, present a roadmap for future research directions that can accelerate the integration 

of intelligent systems into sustainable wastewater management practices. 

 

Literature Review: A Synthesis of AI/ML/DL Methodologies and Applications in WWTPs: 

 

Key Wastewater Parameters: 

To comprehend the application of AI in wastewater treatment, it is first necessary to understand 

the fundamental parameters that govern the process. These parameters serve as both the inputs and 

the targets for AI models, and their accurate measurement and prediction are essential for effective 

plant operation and regulatory compliance. 

A diverse range of contaminants and quality indicators are monitored throughout the wastewater 

treatment process. These include: 
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Total Suspended Solids (TSS): This refers to the concentration of particulate matter present in 

wastewater. Excess solids can harm aquatic life and increase treatment costs. AI-driven models 

help forecast TSS levels so that treatment plants can stay within environmental standards(Inbar & 

Avisar, 2024). 

 

Biochemical Oxygen Demand (BOD5): This parameter reflects how much oxygen 

microorganisms need to break down organic material during a five-day test. It is essential for 

wastewater plant design, evaluating operational performance, and calculating aeration needs, 

which account for a major share of a facility’s energy usage(Inbar & Avisar, 2024). 

 

Chemical Oxygen Demand (COD): COD indicates the overall oxygen required to chemically 

oxidize both organic and inorganic substances in wastewater. Because it is faster to measure than 

BOD5, it serves as a practical substitute for estimating total pollution. Comparing COD with 

BOD5 also helps determine the biodegradability of the influent and detect potential industrial 

discharges(Inbar & Avisar, 2024). 

 

Total Nitrogen (TN) and Ammonia (NH3-N): Nitrogen compounds, especially ammonia, are 

primary contributors to eutrophication and oxygen depletion in natural waters. Their removal 

through nitrification and denitrification is a key treatment step in many plants. AI approaches are 

commonly applied to forecast how efficiently these nitrogen species can be reduced and to monitor 

effluent concentrations(Inbar & Avisar, 2024). 

 

Total Phosphorus (TP): Like nitrogen, phosphorus is a major nutrient that contributes to 

eutrophication. Its removal is often a complex biological process, and TP is a parameter that 

frequently exceeds regulatory thresholds. Predictive models for TP are therefore crucial for 

ensuring compliance(Inbar & Avisar, 2024). 

 

Core AI Paradigms 

The AI methodologies applied to these parameters can be broadly categorized based on their 

learning objectives. Regression models are utilized to predict continuous, numerical values such 

as the concentration of a pollutant in mg/L. Conversely, classification models are designed to 

predict discrete outcomes, for example, whether a specific parameter will be above or below a 

regulatory threshold (a binary classification task) or to identify which operational state a plant is 

in (a multi-class task). Finally, time-series forecasting models are a specialized category, 

particularly effective for sequential data like daily or hourly measurements, to predict future values 

based on past trends and patterns(Inbar & Avisar, 2024; Malviya & Jaspal, 2021). 

 

Predictive Modeling of Effluent Quality: 

The development of accurate predictive models for effluent quality is a cornerstone of AI 

application in wastewater treatment. The literature reveals a wide range of approaches, from 

traditional statistical and machine learning models to complex deep learning architectures and 

hybrid systems. 
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Traditional and Ensemble Machine Learning Models 

 

A range of well-known machine learning techniques has been applied effectively to forecast 

wastewater parameters. Selecting an appropriate algorithm typically depends on how complex the 

problem is and the trade-off between accuracy and interpretability. 

 

• Artificial Neural Networks (ANN) and Multilayer Perceptron (MLP): Inspired by the 

architecture of the human brain, these approaches excel at capturing intricate, non-linear 

patterns(Omarova et al., 2023). Research has demonstrated their strength in estimating key 

indicators. For example, one comparative analysis identified an ANN-MLP configuration as 

the best performer for TSS estimation, reporting an R² of 0.8 on the test data. Other studies 

have achieved an R² of 0.97 for COD prediction(Inbar & Avisar, 2024). Despite their strong 

predictive capability, ANNs are sometimes considered “black boxes,” making them harder for 

operators to interpret and trust(Masood et al., 2024). 

• Tree-Based Ensemble Models: These methods merge many individual decision trees into a 

single, more generalized model, which typically improves accuracy and adaptability. 

• Random Forest (RF): RF constructs numerous decision trees and combines their outputs. It 

handles high-dimensional inputs effectively and has proven superior for estimating COD and 

TSS in some cases, reaching about 91 % and 95 % accuracy, respectively(Mahanna et al., 

2024). 

• AdaBoost (Adaptive Boosting): AdaBoost trains a sequence of models, each one correcting 

the mistakes of its predecessor. In one study on TSS prediction, it slightly outperformed other 

approaches, yielding a test-set R² of 0.77(Inbar & Avisar, 2024). 

• XGBoost (Extreme Gradient Boosting): This enhanced form of gradient boosting 

consistently delivers strong accuracy and reliability. In an Effluent Quality Index study, 

XGBoost achieved the smallest Mean Absolute Percentage Error (MAPE) and an R² of 0.813, 

surpassing alternatives such as AdaBoost and Support Vector Regression(Bo-Qi et al., 2025). 

• Gene Expression Programming (GEP): A unique type of evolutionary algorithm, GEP is 

notable for its ability to produce explicit mathematical expressions that link input variables to 

the target output. This provides a level of model transparency and interpretability that is often 

missing from other ML models. A study on predicting WWTP influent parameters found that 

GEP models were the most accurate for BOD5 and COD, with R2 values of 0.784 and 0.861, 

respectively(Inbar & Avisar, 2024).The derived equations provide a clear, functional relationship 

that can be easily understood and implemented by operators. The model for 

BOD5, for example, involved terms related to TSS, OrgN, and OrgP, while excluding 

ammonia and inorganic phosphorus, which aligns with the biochemical principles of BOD5 

measurement(Inbar & Avisar, 2024). 

• Support Vector Regression (SVR): Based on the principle of finding an optimal hyperplane 

to separate data, SVR models have also shown strong performance in predicting wastewater 

parameters. One study found that SVR excelled in fitting accuracy for an effluent quality index 

(EQI), achieving the highest R2 of 0.826, though it exhibited less stability in its predictions 

compared to XGBoost(Bo-Qi et al., 2025). 

It is apparent that the performance of a given algorithm is not universal but is highly 

dependent on the specific wastewater parameter being predicted and the characteristics of the 

dataset. For instance, while ANN-MLP performed best for TSS in one study, GEP was superior 

for BOD5 and COD in another, and XGBoost was the top performer for a composite EQI(Malviya 
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& Jaspal, 2021; Pisa et al., 2021). This highlights a crucial consideration: the selection of a model 

is not a one-size-fits-all problem. It is a process of balancing multiple objectives—including 

predictive accuracy, computational efficiency, data requirements, and model interpretability—

based on the unique context of the application. The transparency offered by a model like GEP, for 

example, may be more valuable to a plant manager than a marginal increase in R2 from a more 

complex, opaque model. 

 

Advanced Deep Learning Architectures 

 

Deep learning, a branch of machine learning, employs multiple neural layers capable of 

automatically extracting complex features from data. These techniques excel when working with 

large and intricate datasets and are especially valuable for recognizing long-range patterns in time-

series information, an important aspect of monitoring wastewater treatment processes. 

• Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU): LSTM and GRU 

are specialized forms of recurrent neural networks designed to handle sequential data. They 

effectively address issues such as vanishing or exploding gradients that often affect standard 

RNNs. Their built-in gating structures allow them to retain or discard information as needed, 

making them well suited for capturing the temporal behavior of WWTP operations(Inbar & 

Avisar, 2024). One study that compared LSTM, GRU, and Transformer models on a simulated 

WWTP dataset (BSM2) found that GRU consistently demonstrated the most robust 

performance during dynamic conditions like rain and storm events. It effectively balanced 

predictive responsiveness and stability, whereas LSTM struggled with rapid fluctuations. The 

Transformer model, while excelling in stable dry weather, was more sensitive to sudden 

changes(Voipan et al., 2025). This indicates that GRU's simplified architecture and efficient 

information flow make it particularly well-suited for the unpredictable and dynamic nature of 

wastewater data(Voipan et al., 2025). 

• Transformers: Emerging from natural language processing, Transformer models use self-

attention mechanisms to weigh the importance of different data points in a sequence. A 

comparative study noted that the Transformer network delivered the best performance under 

stable dry weather conditions and showed a slight advantage in capturing complex rebound 

effects after rainfall. However, its overall performance during storms was less stable than that 

of the GRU model(Voipan et al., 2025). This suggests that while Transformer models are 

powerful, their application in WWTPs may be better suited for systems with relatively stable 

inputs or as a component of a hybrid model. 

The performance differences between these deep learning models during stable vs. dynamic 

conditions is a key finding in literature. While all models, even traditional ones, can perform well 

under stable dry weather, they all experience increased prediction errors at the onset of rain or 

storm events due to sudden changes in flow and pollutant loads(Voipan et al., 2025). The ability 

of models like GRU to quickly adapt to these sudden changes and maintain stability during the 

critical post-event stabilization phase makes them particularly valuable for building real-time 

monitoring and early warning systems. This highlights the need to evaluate models not just on 

their average performance, but on their robustness during the most challenging operational periods. 
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Hybrid and Multi-Output Models 

An emerging direction in this field is the creation of hybrid approaches that integrate the 

advantages of multiple model types. This approach helps address the weaknesses of individual 

models and enhances overall predictive accuracy and reliability. 

 

• Hybrid Architectures: These methods merge different learning frameworks to build a 

stronger predictive system. One illustration is a deep learning framework that links a Temporal 

Convolutional Network (TCN) with a Long Short-Term Memory (LSTM) network (TCN-

LSTM). This combined model was designed to forecast hourly total nitrogen (TN) levels in 

wastewater treatment plants and achieved 33.1% greater accuracy than using TCN or LSTM 

alone, and 63.6% better than a conventional feedforward neural network (FFNN)(Y. Xie et al., 

2024). The result highlights how combining complementary deep learning techniques—using 

TCN for local pattern detection and LSTM for long-term sequence modeling—can 

significantly boost performance. 

• Clustering-Based Hybrid Models: Another innovative method employs a two-step prediction 

strategy. It first applies clustering to divide time-series data into segments that reflect different 

operating states (such as normal or rainy conditions) and then uses the best-fit model for each 

cluster. A study applying this technique on the BSM2 platform utilized a Partial Least Squares 

Random Weight Neural Network (PLS-RWNN) for large-sample, stable conditions, and a 

Multi-output Correlation Vector Machine (MRVM) for small-sample, high-variability 

situations. This combined system improved the root mean square successive difference 

(RMSSD) by 42.17% compared to using a single model on unclustered data(Inbar & Avisar, 

2024). 

• Multi-Source Data Fusion: Modern WWTPs generate a wealth of data from various sources, 

including water quantity, process variables, energy consumption, and traditional water quality 

measurements. Advanced models are now designed to fuse this multi-source data for a more 

comprehensive and accurate prediction. A deep learning framework using LSTM and GRU at 

an Industrial Effluent Treatment Plant (IETP) in China found that fusing these data sources 

enabled the deep learning models to significantly outperform traditional machine learning 

models in predicting effluent quality(Inbar & Avisar, 2024). This approach validates the 

existence of complex relationships between seemingly disparate variables, such as energy 

consumption and water quality(Inbar & Avisar, 2024). 

This movement towards hybridization and multi-source data fusion represents a key 

development in the field. These approaches are not simply about achieving incremental 

performance gains; they are a strategic response to the inherent weaknesses of single models and 

single data streams. Mechanistic models provide interpretability but struggle with real-world data 

variability, while data-driven models are powerful but can be "black boxes" that require massive 

datasets. Hybrid and data fusion models, by integrating different methodologies and data sources, 

aim to create more resilient, accurate, and comprehensive solutions that are better suited for the 

complexities of real-world WWTPs. 
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Data-Centric Strategies for Model Enhancement: 

 

The performance of any data-driven model is fundamentally tied to the quality and 

relevance of the data it is trained on. Consequently, advanced data-centric strategies, such as 

feature selection and data management, are as crucial as the model architecture itself. 

Feature selection involves pinpointing and choosing the most important input variables for a 

predictive model. This key step simplifies computations, lowers the chance of overfitting, and 

enhances both the accuracy and the interpretability of the model(Inbar & Avisar, 2024). 

 

Methodologies: Research identifies several main types of feature-selection techniques. 

• Filter methods (e.g., Correlation, Mutual Information): These approaches pick variables 

according to how strongly they relate to the target outcome, independent of the specific 

machine-learning algorithm(Malviya & Jaspal, 2021). 

• Wrapper methods (e.g., Sequential Backward Selection, SBS): Here, subsets of variables 

are chosen by repeatedly training a model and checking how well it performs, effectively 

integrating the learning algorithm into the selection cycle(Inbar & Avisar, 2024). 

• Embedded methods (e.g., Least Absolute Shrinkage and Selection Operator, LASSO): 

These techniques carry out variable selection as part of the model-training routine itself(Inbar 

& Avisar, 2024). 

 

Importance and Insights: 

Studies using these methods consistently find that a small subset of features often account 

for the majority of a model's predictive power. For example, a study on TSS prediction found that 

a scenario using only four features (CODe, BOD5e, BOD5i, TN) selected by the SBS method was 

the most efficient and achieved the highest R2 value(Inbar & Avisar, 2024). Similarly, a 

comparative study using Monte Carlo Simulation (MCS) and GEP found that TSS was the most 

influential parameter for both BOD5 and COD estimation, with a 10% increase in TSS leading to 

approximately a 7.9% increase in both target parameters(Inbar & Avisar, 2024).The ability of these 

techniques to identify key, non-redundant parameters not only improves model performance but 

also provides valuable operational insights. For instance, the high importance of TSS in predicting 

BOD and COD confirms that a major portion of biodegradable material is in particulate form. 

However, a crucial distinction must be made between correlation and causation. A study on GEP 

models for COD prediction noted that while ammonia (NH3) was an influential factor, this may 

be due to a hidden correlation with other toxic compounds rather than a direct chemical link, 

demonstrating the need for domain expertise to correctly interpret model outputs and avoid 

erroneous assumptions(Inbar & Avisar, 2024). 

 

Addressing Data Challenges 

Data-driven models are heavily reliant on large, clean, and representative datasets. However, real-

world WWTP data is often characterized by scarcity, noise, and non-Gaussian distributions, posing 

significant challenges for modeling(Yang et al., 2024). 

 

Data Scarcity and Quality: The high cost and time-intensive nature of manual laboratory tests 

and the susceptibility of online sensors to errors and malfunctions often result in incomplete or 

low-quality datasets(Shahab et al., n.d.). This is a major limitation for many deep learning models 
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that require vast amounts of data to train effectively and generalize to unseen conditions(Shahab 

et al., n.d.). 

 

Advanced Techniques for Data Limitations: 

 

o Transfer Learning (TL): TL is an emerging technique that addresses data scarcity by 

transferring knowledge from a model trained on a large dataset (the "source domain") to a new, 

data-poor task (the "target domain")(Pisa et al., 2021). This can involve using a well-

established simulation model like BSM2 as a source and transferring its learned knowledge to 

a real-world plant with limited data, thereby improving the target model's performance without 

extensive retraining(Koksal & Aydin, 2024). A key finding is that TL-based controllers can 

improve performance by 40-99% compared to conventional methods(Pisa et al., 2021). 

o Semi-Supervised Learning (SSL): This approach combines the use of a small amount of 

labeled data with a large amount of unlabeled data to train a model(Jia et al., 2025). This is 

particularly useful in contexts where obtaining labeled data is a significant challenge. For 

example, an SSL method for identifying microparticles in wastewater was shown to 

significantly improve detection accuracy with a limited number of labeled images, highlighting 

its potential for long-term monitoring where manual labeling is unfeasible(Jia et al., 2025). 

 

Discussion: Critical Insights, Challenges, and a Roadmap for the Future 

The synthesis of recent literature on AI in wastewater treatment reveals a field of rapid innovation 

and significant promise. However, it also highlights a number of persistent challenges that must 

be addressed to enable widespread, real-world adoption. This discussion will provide a critical 

analysis of the current state, connecting the various findings to form a holistic view of the field's 

trajectory and outlining a concrete roadmap for future research. 

 

Overarching Trends and Key Findings 

The extensive body of work on predictive modeling in WWTPs has consistently shown that 

no single AI algorithm is universally superior. Instead, the efficacy of a model is determined by a 

complex interplay of the problem type, data characteristics, and operational objectives. 

A clear trend is the shift from traditional machine learning to more sophisticated models. 

While classical algorithms like ANN, XGBoost, and RF are still widely and effectively used, there 

is a growing consensus on the superiority of deep learning (DL) architectures, particularly LSTM 

and GRU, for handling time-series data and capturing the complex, non-linear dynamics of 

WWTPs(Voipan et al., 2025). These models demonstrate exceptional performance in predicting 

effluent quality under both stable and dynamic conditions, with GRU often showing better stability 

during disruptive events like rain or storms(Voipan et al., 2025). 

Furthermore, research has moved beyond simple predictions to more integrated and 

advanced systems. The rise of hybrid and multi-source data fusion models, which combine the 

strengths of different algorithms or data types, is a notable trend(Y. Xie et al., 2024). This is a 

direct response to the limitations of single models when faced with a wide range of operational 

conditions and data sources. Emerging paradigms such as Digital Twins (DTs)(Wang et al., 2024), 

Explainable AI (XAI) (Sheik et al., 2025), and Reinforcement Learning (RL) (Zhu et al., 2025)are 

also gaining traction, moving the field towards autonomous control, transparent decision-making, 

and holistic plant management. This represents a fundamental shift from merely anticipating a 

problem to learning the optimal solution and implementing it autonomously.  
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Comparative Analysis Across Studies: Table 1 provides a concise comparison of selected 

studies, outlining their objectives, methodologies, datasets, main findings, and notable strengths 

and limitations in wastewater process modelling. 

 

Table 1. Comparative Analysis Across Studies 
Paper Objective Methods / 

Algorithms 
Dataset Key 

Findings 
Strengths Limitations 

(Gholizad
eh et al., 
2024) 

Predict 
effluent 
Total 
Suspended 
Solids 
(TSS) and 
evaluate 
the effect of 
feature-
selection 
methods. 

Artificial 
Neural 
Network – 
Multi-
Layer 
Perceptron 
(ANN-
MLP), k-
Nearest 
Neighbour
s (KNN), 
AdaBoost; 
feature-
selection 
methods 
(Correlatio
n, Mutual 
Informatio
n, 
Sequential 
Backward 
Selection, 
LASSO, 
Tree-
Based, 
Variance 
Threshold)
. 

Tehran 
Municipal 
WWTP, 
Iran; daily 
data 2016–
2020 (654 
samples). 

ANN-MLP 
with 
Sequential 
Backward 
Selection 
achieved 
the highest 
performanc
e (R² = 
0.80); 
appropriate 
feature 
selection 
improved 
accuracy by 
~6%. 

Demonstrat
es the 
importance 
of feature 
selection; 
rigorous 
validation 
using k-fold 
and grid-
search 
cross-
validation. 

Single 
WWTP 
dataset; 
limited 
range of 
algorithms. 

(X. Xie et 
al., 2025) 

Develop a 
multi-
output 
hybrid 
model for 
Total 
Nitrogen 
(TN), 
Soluble 
Nitrate 
(SNO) and 
Soluble 
Oxygen 
(SO); 

Gaussian 
Mixture 
Model 
(GMM) 
clustering; 
Hybrid 
Partial 
Least 
Squares – 
Random 
Wavelet 
Neural 
Network / 
Multi-

Benchmark 
Simulation 
Model No. 
2 (BSM2) 
platform; 
364 days, 
34 944 sets 
(15-min 
intervals). 

Clustering-
based 
hybrid 
model 
improved 
performanc
e by 
42.17% 
(RMSSD = 
0.6189). 

Tackles data 
fluctuations; 
combines 
complement
ary models; 
comprehens
ive 
validation. 

Simulation-
only (no 
real-world 
data); MRVM 
is 
computation
ally slow on 
large 
datasets. 
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mitigate 
single-
model 
degradatio
n via 
clustering. 

Relevance 
Vector 
Machine 
(PLS-
RWNN / 
MRVM). 

(Aghdam 
et al., 
2023) 

Predict 
influent 
Biochemica
l Oxygen 
Demand 
(BOD₅) and 
Chemical 
Oxygen 
Demand 
(COD); 
derive 
mathemati
cal 
expression
s and 
identify 
influential 
parameters
. 

Gene 
Expression 
Programmi
ng (GEP), 
MLP 
Neural 
Network, 
KNN, 
Gradient 
Boosting, 
Regression 
Trees, 
Random 
Forest; 
Monte 
Carlo 
Simulation. 

Seven 
Hong Kong 
municipal 
WWTPs; 
monthly 
data 2018–
2020. 

GEP 
produced 
the most 
accurate 
results 
(BOD₅ R² = 
0.727; COD 
R² = 0.861) 
and explicit 
equations. 

Provides 
interpretabl
e 
mathematic
al 
expressions; 
highlights 
influential 
parameters 
such as TSS. 

Monthly (not 
real-time) 
data; only 
municipal 
plants; 
potential 
BOD₅ 
measuremen
t errors. 

(Inbar & 
Avisar, 
2024) 

Predict 
effluent 
Total 
Phosphoru
s (TP) 
compliance 
(binary 
classificatio
n); analyse 
nutrient 
removal 
efficiency. 

XGBoost, 
Random 
Forest, 
Support 
Vector 
Machine, 
ANN, Long 
Short-
Term 
Memory 
(LSTM). 

Kfar Saba – 
Hod 
Hasharon 
WWTP, 
Israel; 11-
year daily 
dataset (1 
624 
samples). 

XGBoost 
achieved 
87% 
accuracy 
and 85% 
precision; 
Random 
Forest had 
highest 
recall 
(90%). 

Long-term, 
real-world 
dataset; 
explicit 
focus on 
regulatory 
compliance; 
precision–
recall trade-
off analysis. 

Single 
WWTP; 
limited to 
TP; 
uncertain 
generalizabil
ity to other 
climates. 

(Zhang et 
al., 2025) 

Predict 
effluent 
COD, 
Ammonia-
Nitrogen 
(NH₃-N), 
TN and TP; 
integrate 
multi-
source 
data; 
compare 
deep 

Random 
Forest, 
MLP, 
LSTM, 
Gated 
Recurrent 
Unit 
(GRU); 
RReliefF 
for feature 
importanc
e. 

Industrial 
Effluent 
Treatment 
Plant, 
Anhui 
Province, 
China; one-
year hourly 
data (8 689 
sets). 

Deep 
learning 
(LSTM, 
GRU) 
outperform
ed 
traditional 
ML; GRU 
slightly 
superior for 
COD/NH₃-
N. 

Demonstrat
es multi-
source data 
fusion; 
shows DL 
advantages 
on complex 
data; 
includes 
feature-
importance 
analysis. 

Single-site 
dataset; COD 
prediction 
still 
challenging. 
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learning 
with 
traditional 
ML. 

(Pisa et 
al., 2021) 

Apply 
Transfer 
Learning 
(TL) to 
design 
WWTP 
control 
loops 
without 
extensive 
process 
knowledge. 

LSTM-
based 
controllers 
with 
transfer-
learning 
strategies. 

Experimen
tal control-
loop data 
(details not 
fully 
specified). 

TL 
controllers 
reduced 
oscillations 
and 
improved 
Integral 
Absolute 
Error by 
40–94% 
and Integral 
Squared 
Error by 
34–99%. 

Dramatically 
cuts model-
design and 
training 
time by 
reusing 
knowledge; 
marked 
improvemen
t over 
conventiona
l controllers. 

Focuses on 
control loops 
rather than 
effluent-
quality 
prediction; 
future 
research 
directions 
not clearly 
stated. 

(Bøhn et 
al., 2025) 

Identify 
foundation
al 
requiremen
ts for data-
driven 
modelling 
in WWTPs. 

Linear 
models 
(ElasticNet
) and non-
linear 
models 
(LSTM, 
Temporal 
Convolutio
nal 
Network). 

Pilot 
denitrificat
ion reactor, 
Veas 
facility, 
Norway. 

Non-linear 
models fit 
training 
data best 
but linear 
models 
generalised 
better; 
temperatur
e shifts 
strongly 
affected 
performanc
e. 

Emphasises 
practical 
issues; 
publicly 
shares code 
and data for 
reproducibil
ity. 

Single pilot 
reactor; 
unmeasured 
factors (e.g. 
biofilm 
carrier loss) 
remain 
challenging. 

(Alvi, 
2024) 

Review 
deep-
learning 
methods 
and 
application
s in 
wastewater 
process 
modelling. 

Narrative 
review of 
DL models 
(LSTM, 
GRU) and 
mechanisti
c models. 

None 
(review 
article). 

DL 
emerging as 
an 
alternative 
to semi-
mechanistic 
models; 
highlights 
limited 
cross-
community 
understandi
ng. 

Bridges 
knowledge 
gap between 
two 
research 
communitie
s; identifies 
open 
research 
problems. 

No original 
data or 
model 
results. 
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Conclusion 

 

The integration of artificial intelligence and machine learning into wastewater treatment has 

transitioned from a theoretical concept to a practical and transformative reality. AI models, 

particularly advanced deep learning architectures like GRU and hybrid systems, have 

demonstrated a superior capability to predict key effluent parameters and handle the complex, non-

linear dynamics of WWTPs. These models act as powerful soft sensors, providing operators with 

the real-time insights necessary for proactive management, optimized energy consumption, and 

ensured regulatory compliance. 

The field has evolved beyond simply predicting future states. Emerging paradigms such as 

Digital Twins and Reinforcement Learning are enabling the development of sophisticated 

prescriptive control systems that can autonomously optimize complex, multi-objective functions. 

Furthermore, advancements in data-centric strategies like feature selection and techniques like 

Explainable AI are addressing the critical barriers of data quality and model interpretability, which 

are essential for building trust and facilitating real-world adoption. 

While challenges remaining, including data scarcity, a lack of standardization, and the need 

for greater interdisciplinary collaboration, the future of AI in wastewater treatment is profoundly 

promising. Continued research into hybrid and physics-informed models, coupled with an 

expanded focus on multi-objective optimization and novel applications like resource recovery and 

predictive maintenance, will pave the way for a new era of intelligent, sustainable, and resilient 

wastewater management. The transition to a data-driven paradigm is not just about technological 

advancement; it is about securing a cleaner, more sustainable future for our water resources. 
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