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Abstract

As the world’s need for clean water keeps rising and pollution continues to worsen, there is a
growing push for better wastewater treatment systems. Treatment plants (WWTPs) are essential
not only for protecting public health but also for keeping the environment safe. Still, running these
plants is not easy because the quality of incoming water often changes, the biological processes
are complex, and regulations are very strict. Traditional methods usually fall short, being slow and
inefficient. Newer approaches, like machine learning (ML) and artificial intelligence (Al), bring
fresh opportunities by making it possible to predict issues in real time, spot irregularities, improve
processes, and support better decision-making. This literature review brings together findings from
five key research papers and over 40 additional studies published between 2018 and 2025. The
review highlights a significant shift towards advanced deep learning (e.g., LSTM, GRU) and
ensemble models, demonstrating superior performance in capturing complex, time-dependent
data. Key trends include multi-source data fusion, expanding focus on effluent quality prediction
for regulatory compliance, nutrient removal, energy optimization, and predictive maintenance.
Despite these advancements, persistent challenges include data quality and availability, model
interpretability ("black box™ nature), generalizability across diverse WWTPs, and integration with
existing infrastructure. Future research directions emphasize hybrid and physics-informed models,
Explainable Al (XAl), Digital Twins, Reinforcement Learning for optimal control, and fostering
interdisciplinary collaboration. Ultimately, ML/AI holds immense potential to revolutionize
wastewater management, transitioning from reactive to proactive strategies, contingent on
addressing these critical limitations for widespread and sustainable adoption.
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Introduction

Efficient and sustainable use of water resources has become one of the major global issues
of this century. With rapid urbanization, rising population, and industrial development, the demand
for reliable wastewater treatment is greater than ever(Malviya & Jaspal, 2021; Wang et al., 2024).
Wastewater treatment plants (WWTPS) serve as critical infrastructure to protect both human health
and ecosystems by eliminating pollutants from municipal and industrial wastewater before it is
released or reused. However, operating these plants is highly complex because the processes are
dynamic, non-linear, and affected by numerous biological, chemical, and physical factors, which
can vary daily, seasonally, and annually(Inbar & Avisar, 2024; Malviya & Jaspal, 2021; Zamfir et
al., 2025).

Traditionally, WWTPs depended on empirical methods and offline laboratory testing. This
approach is typically slow, resource-heavy, and costly, since important water quality indicators
like biochemical oxygen demand (BOD:s), chemical oxygen demand (COD), and total suspended
solids (TSS) often take several days to analyze. The delay in results prevents operators from
making timely, data-informed decisions. As a consequence, plants may face higher operational
expenses, greater energy use, and in some cases, difficulties in meeting strict environmental
standards(Inbar & Avisar, 2024; Zamfir et al., 2025). Conventional systems frequently fail to keep
pace with modern pollutants and variable influent quality. To overcome these limitations,
advanced technologies such as artificial intelligence (Al), machine learning (ML), and deep
learning (DL) are increasingly being recognized as game-changing tools for the wastewater
treatment sector(Malviya & Jaspal, 2021; Yang et al., 2024). These data-driven methods, often
described as “soft sensors” or “virtual instruments,” make use of large collections of past and live
information from online sensors to create predictive models of key effluent parameters. In contrast
to traditional mechanistic approaches built on first-principle equations and often restricted by their
assumptions and complexity, Al models can reveal complex, non-linear connections among
different process variables without the need for a detailed grasp of the underlying physics. This
capability supports continuous monitoring, process optimization, and early alerts, helping
operators shift from reactive control to a proactive management strategy(Chen & Kao, 2025;
Malviya & Jaspal, 2021; Yang et al.,, 2024). The purpose of this paper is to provide a
comprehensive and expert-level review of Al applications in WWTPs. It synthesizes recent
advancements in predictive modeling methodologies, critically analyzes the performance of
various algorithms, and discusses key strategies for overcoming persistent implementation
challenges. The report will explore emerging paradigms such as Digital Twins and Explainable
Al, and finally, present a roadmap for future research directions that can accelerate the integration
of intelligent systems into sustainable wastewater management practices.

Literature Review: A Synthesis of AI/ML/DL Methodologies and Applications in WWTPs:

Key Wastewater Parameters:

To comprehend the application of Al in wastewater treatment, it is first necessary to understand
the fundamental parameters that govern the process. These parameters serve as both the inputs and
the targets for Al models, and their accurate measurement and prediction are essential for effective
plant operation and regulatory compliance.

A diverse range of contaminants and quality indicators are monitored throughout the wastewater
treatment process. These include:
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Total Suspended Solids (TSS): This refers to the concentration of particulate matter present in
wastewater. Excess solids can harm aquatic life and increase treatment costs. Al-driven models
help forecast TSS levels so that treatment plants can stay within environmental standards(Inbar &
Avisar, 2024).

Biochemical Oxygen Demand (BOD5): This parameter reflects how much oxygen
microorganisms need to break down organic material during a five-day test. It is essential for
wastewater plant design, evaluating operational performance, and calculating aeration needs,
which account for a major share of a facility’s energy usage(Inbar & Avisar, 2024).

Chemical Oxygen Demand (COD): COD indicates the overall oxygen required to chemically
oxidize both organic and inorganic substances in wastewater. Because it is faster to measure than
BODS5, it serves as a practical substitute for estimating total pollution. Comparing COD with
BODS5 also helps determine the biodegradability of the influent and detect potential industrial
discharges(Inbar & Avisar, 2024).

Total Nitrogen (TN) and Ammonia (NH3-N): Nitrogen compounds, especially ammonia, are
primary contributors to eutrophication and oxygen depletion in natural waters. Their removal
through nitrification and denitrification is a key treatment step in many plants. Al approaches are
commonly applied to forecast how efficiently these nitrogen species can be reduced and to monitor
effluent concentrations(Inbar & Avisar, 2024).

Total Phosphorus (TP): Like nitrogen, phosphorus is a major nutrient that contributes to
eutrophication. Its removal is often a complex biological process, and TP is a parameter that
frequently exceeds regulatory thresholds. Predictive models for TP are therefore crucial for
ensuring compliance(Inbar & Avisar, 2024).

Core Al Paradigms

The Al methodologies applied to these parameters can be broadly categorized based on their
learning objectives. Regression models are utilized to predict continuous, numerical values such
as the concentration of a pollutant in mg/L. Conversely, classification models are designed to
predict discrete outcomes, for example, whether a specific parameter will be above or below a
regulatory threshold (a binary classification task) or to identify which operational state a plant is
in (a multi-class task). Finally, time-series forecasting models are a specialized category,
particularly effective for sequential data like daily or hourly measurements, to predict future values
based on past trends and patterns(Inbar & Avisar, 2024; Malviya & Jaspal, 2021).

Predictive Modeling of Effluent Quality:

The development of accurate predictive models for effluent quality is a cornerstone of Al
application in wastewater treatment. The literature reveals a wide range of approaches, from
traditional statistical and machine learning models to complex deep learning architectures and
hybrid systems.
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Traditional and Ensemble Machine Learning Models

A range of well-known machine learning techniques has been applied effectively to forecast
wastewater parameters. Selecting an appropriate algorithm typically depends on how complex the
problem is and the trade-off between accuracy and interpretability.

Artificial Neural Networks (ANN) and Multilayer Perceptron (MLP): Inspired by the
architecture of the human brain, these approaches excel at capturing intricate, non-linear
patterns(Omarova et al., 2023). Research has demonstrated their strength in estimating key
indicators. For example, one comparative analysis identified an ANN-MLP configuration as
the best performer for TSS estimation, reporting an R2 of 0.8 on the test data. Other studies
have achieved an R2 of 0.97 for COD prediction(Inbar & Avisar, 2024). Despite their strong
predictive capability, ANNs are sometimes considered “black boxes,” making them harder for
operators to interpret and trust(Masood et al., 2024).

Tree-Based Ensemble Models: These methods merge many individual decision trees into a
single, more generalized model, which typically improves accuracy and adaptability.
Random Forest (RF): RF constructs numerous decision trees and combines their outputs. It
handles high-dimensional inputs effectively and has proven superior for estimating COD and
TSS in some cases, reaching about 91 % and 95 % accuracy, respectively(Mahanna et al.,
2024).

AdaBoost (Adaptive Boosting): AdaBoost trains a sequence of models, each one correcting
the mistakes of its predecessor. In one study on TSS prediction, it slightly outperformed other
approaches, yielding a test-set R2 of 0.77(Inbar & Avisar, 2024).

XGBoost (Extreme Gradient Boosting): This enhanced form of gradient boosting
consistently delivers strong accuracy and reliability. In an Effluent Quality Index study,
XGBoost achieved the smallest Mean Absolute Percentage Error (MAPE) and an R? of 0.813,
surpassing alternatives such as AdaBoost and Support Vector Regression(Bo-Qi et al., 2025).
Gene Expression Programming (GEP): A unique type of evolutionary algorithm, GEP is
notable for its ability to produce explicit mathematical expressions that link input variables to
the target output. This provides a level of model transparency and interpretability that is often
missing from other ML models. A study on predicting WWTP influent parameters found that
GEP models were the most accurate for BOD5 and COD, with R2 values of 0.784 and 0.861,
respectively(inbar & Avisar, 2024). The derived equations provide a clear, functional relationship
that can be easily understood and implemented by operators. The model for
BODS5, for example, involved terms related to TSS, OrgN, and OrgP, while excluding
ammonia and inorganic phosphorus, which aligns with the biochemical principles of BOD5
measurement(Inbar & Avisar, 2024).

Support Vector Regression (SVR): Based on the principle of finding an optimal hyperplane
to separate data, SVR models have also shown strong performance in predicting wastewater
parameters. One study found that SVR excelled in fitting accuracy for an effluent quality index
(EQI), achieving the highest R2 of 0.826, though it exhibited less stability in its predictions
compared to XGBoost(Bo-Qi et al., 2025).

It is apparent that the performance of a given algorithm is not universal but is highly

dependent on the specific wastewater parameter being predicted and the characteristics of the
dataset. For instance, while ANN-MLP performed best for TSS in one study, GEP was superior
for BOD5 and COD in another, and XGBoost was the top performer for a composite EQI(Malviya
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& Jaspal, 2021; Pisa et al., 2021). This highlights a crucial consideration: the selection of a model
IS not a one-size-fits-all problem. It is a process of balancing multiple objectives—including
predictive accuracy, computational efficiency, data requirements, and model interpretability—
based on the unique context of the application. The transparency offered by a model like GEP, for
example, may be more valuable to a plant manager than a marginal increase in R2 from a more
complex, opaque model.

Advanced Deep Learning Architectures

Deep learning, a branch of machine learning, employs multiple neural layers capable of
automatically extracting complex features from data. These techniques excel when working with
large and intricate datasets and are especially valuable for recognizing long-range patterns in time-
series information, an important aspect of monitoring wastewater treatment processes.

e Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU): LSTM and GRU
are specialized forms of recurrent neural networks designed to handle sequential data. They
effectively address issues such as vanishing or exploding gradients that often affect standard
RNNs. Their built-in gating structures allow them to retain or discard information as needed,
making them well suited for capturing the temporal behavior of WWTP operations(Inbar &
Avisar, 2024). One study that compared LSTM, GRU, and Transformer models on a simulated
WWTP dataset (BSM2) found that GRU consistently demonstrated the most robust
performance during dynamic conditions like rain and storm events. It effectively balanced
predictive responsiveness and stability, whereas LSTM struggled with rapid fluctuations. The
Transformer model, while excelling in stable dry weather, was more sensitive to sudden
changes(Voipan et al., 2025). This indicates that GRU's simplified architecture and efficient
information flow make it particularly well-suited for the unpredictable and dynamic nature of
wastewater data(Voipan et al., 2025).

e Transformers: Emerging from natural language processing, Transformer models use self-
attention mechanisms to weigh the importance of different data points in a sequence. A
comparative study noted that the Transformer network delivered the best performance under
stable dry weather conditions and showed a slight advantage in capturing complex rebound
effects after rainfall. However, its overall performance during storms was less stable than that
of the GRU model(Voipan et al., 2025). This suggests that while Transformer models are
powerful, their application in WWTPs may be better suited for systems with relatively stable
inputs or as a component of a hybrid model.

The performance differences between these deep learning models during stable vs. dynamic
conditions is a key finding in literature. While all models, even traditional ones, can perform well
under stable dry weather, they all experience increased prediction errors at the onset of rain or
storm events due to sudden changes in flow and pollutant loads(Voipan et al., 2025). The ability
of models like GRU to quickly adapt to these sudden changes and maintain stability during the
critical post-event stabilization phase makes them particularly valuable for building real-time
monitoring and early warning systems. This highlights the need to evaluate models not just on
their average performance, but on their robustness during the most challenging operational periods.
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Hybrid and Multi-Output Models

An emerging direction in this field is the creation of hybrid approaches that integrate the
advantages of multiple model types. This approach helps address the weaknesses of individual
models and enhances overall predictive accuracy and reliability.

Hybrid Architectures: These methods merge different learning frameworks to build a
stronger predictive system. One illustration is a deep learning framework that links a Temporal
Convolutional Network (TCN) with a Long Short-Term Memory (LSTM) network (TCN-
LSTM). This combined model was designed to forecast hourly total nitrogen (TN) levels in
wastewater treatment plants and achieved 33.1% greater accuracy than using TCN or LSTM
alone, and 63.6% better than a conventional feedforward neural network (FFNN)(Y. Xie et al.,
2024). The result highlights how combining complementary deep learning techniques—using
TCN for local pattern detection and LSTM for long-term sequence modeling—can
significantly boost performance.

Clustering-Based Hybrid Models: Another innovative method employs a two-step prediction
strategy. It first applies clustering to divide time-series data into segments that reflect different
operating states (such as normal or rainy conditions) and then uses the best-fit model for each
cluster. A study applying this technique on the BSM2 platform utilized a Partial Least Squares
Random Weight Neural Network (PLS-RWNN) for large-sample, stable conditions, and a
Multi-output Correlation Vector Machine (MRVM) for small-sample, high-variability
situations. This combined system improved the root mean square successive difference
(RMSSD) by 42.17% compared to using a single model on unclustered data(Inbar & Avisar,
2024).

Multi-Source Data Fusion: Modern WWTPs generate a wealth of data from various sources,
including water quantity, process variables, energy consumption, and traditional water quality
measurements. Advanced models are now designed to fuse this multi-source data for a more
comprehensive and accurate prediction. A deep learning framework using LSTM and GRU at
an Industrial Effluent Treatment Plant (IETP) in China found that fusing these data sources
enabled the deep learning models to significantly outperform traditional machine learning
models in predicting effluent quality(Inbar & Avisar, 2024). This approach validates the
existence of complex relationships between seemingly disparate variables, such as energy
consumption and water quality(Inbar & Avisar, 2024).

This movement towards hybridization and multi-source data fusion represents a key

development in the field. These approaches are not simply about achieving incremental
performance gains; they are a strategic response to the inherent weaknesses of single models and
single data streams. Mechanistic models provide interpretability but struggle with real-world data
variability, while data-driven models are powerful but can be "black boxes" that require massive
datasets. Hybrid and data fusion models, by integrating different methodologies and data sources,
aim to create more resilient, accurate, and comprehensive solutions that are better suited for the
complexities of real-world WWTPs.
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Data-Centric Strategies for Model Enhancement:

The performance of any data-driven model is fundamentally tied to the quality and
relevance of the data it is trained on. Consequently, advanced data-centric strategies, such as
feature selection and data management, are as crucial as the model architecture itself.

Feature selection involves pinpointing and choosing the most important input variables for a
predictive model. This key step simplifies computations, lowers the chance of overfitting, and
enhances both the accuracy and the interpretability of the model(Inbar & Avisar, 2024).

Methodologies: Research identifies several main types of feature-selection techniques.

o Filter methods (e.g., Correlation, Mutual Information): These approaches pick variables
according to how strongly they relate to the target outcome, independent of the specific
machine-learning algorithm(Malviya & Jaspal, 2021).

e Wrapper methods (e.g., Sequential Backward Selection, SBS): Here, subsets of variables
are chosen by repeatedly training a model and checking how well it performs, effectively
integrating the learning algorithm into the selection cycle(Inbar & Avisar, 2024).

o Embedded methods (e.g., Least Absolute Shrinkage and Selection Operator, LASSO):
These techniques carry out variable selection as part of the model-training routine itself(Inbar
& Avisar, 2024).

Importance and Insights:

Studies using these methods consistently find that a small subset of features often account
for the majority of a model's predictive power. For example, a study on TSS prediction found that
a scenario using only four features (CODe, BOD5e, BOD5i, TN) selected by the SBS method was
the most efficient and achieved the highest R2 value(Inbar & Avisar, 2024). Similarly, a
comparative study using Monte Carlo Simulation (MCS) and GEP found that TSS was the most
influential parameter for both BOD5 and COD estimation, with a 10% increase in TSS leading to
approximately a 7.9% increase in both target parameters(Inbar & Avisar, 2024).The ability of these
techniques to identify key, non-redundant parameters not only improves model performance but
also provides valuable operational insights. For instance, the high importance of TSS in predicting
BOD and COD confirms that a major portion of biodegradable material is in particulate form.
However, a crucial distinction must be made between correlation and causation. A study on GEP
models for COD prediction noted that while ammonia (NH3) was an influential factor, this may
be due to a hidden correlation with other toxic compounds rather than a direct chemical link,
demonstrating the need for domain expertise to correctly interpret model outputs and avoid
erroneous assumptions(Inbar & Avisar, 2024).

Addressing Data Challenges

Data-driven models are heavily reliant on large, clean, and representative datasets. However, real-
world WWTP data is often characterized by scarcity, noise, and non-Gaussian distributions, posing
significant challenges for modeling(Yang et al., 2024).

Data Scarcity and Quality: The high cost and time-intensive nature of manual laboratory tests

and the susceptibility of online sensors to errors and malfunctions often result in incomplete or
low-quality datasets(Shahab et al., n.d.). This is a major limitation for many deep learning models
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that require vast amounts of data to train effectively and generalize to unseen conditions(Shahab
etal., n.d.).

Advanced Techniques for Data Limitations:

o Transfer Learning (TL): TL is an emerging technique that addresses data scarcity by
transferring knowledge from a model trained on a large dataset (the "source domain™) to a new,
data-poor task (the "target domain")(Pisa et al., 2021). This can involve using a well-
established simulation model like BSM2 as a source and transferring its learned knowledge to
a real-world plant with limited data, thereby improving the target model's performance without
extensive retraining(Koksal & Aydin, 2024). A key finding is that TL-based controllers can
improve performance by 40-99% compared to conventional methods(Pisa et al., 2021).

o Semi-Supervised Learning (SSL): This approach combines the use of a small amount of
labeled data with a large amount of unlabeled data to train a model(Jia et al., 2025). This is
particularly useful in contexts where obtaining labeled data is a significant challenge. For
example, an SSL method for identifying microparticles in wastewater was shown to
significantly improve detection accuracy with a limited number of labeled images, highlighting
its potential for long-term monitoring where manual labeling is unfeasible(Jia et al., 2025).

Discussion: Critical Insights, Challenges, and a Roadmap for the Future

The synthesis of recent literature on Al in wastewater treatment reveals a field of rapid innovation
and significant promise. However, it also highlights a number of persistent challenges that must
be addressed to enable widespread, real-world adoption. This discussion will provide a critical
analysis of the current state, connecting the various findings to form a holistic view of the field's
trajectory and outlining a concrete roadmap for future research.

Overarching Trends and Key Findings

The extensive body of work on predictive modeling in WWTPs has consistently shown that
no single Al algorithm is universally superior. Instead, the efficacy of a model is determined by a
complex interplay of the problem type, data characteristics, and operational objectives.

A clear trend is the shift from traditional machine learning to more sophisticated models.
While classical algorithms like ANN, XGBoost, and RF are still widely and effectively used, there
is a growing consensus on the superiority of deep learning (DL) architectures, particularly LSTM
and GRU, for handling time-series data and capturing the complex, non-linear dynamics of
WWTPs(Voipan et al., 2025). These models demonstrate exceptional performance in predicting
effluent quality under both stable and dynamic conditions, with GRU often showing better stability
during disruptive events like rain or storms(\Voipan et al., 2025).

Furthermore, research has moved beyond simple predictions to more integrated and
advanced systems. The rise of hybrid and multi-source data fusion models, which combine the
strengths of different algorithms or data types, is a notable trend(Y. Xie et al., 2024). This is a
direct response to the limitations of single models when faced with a wide range of operational
conditions and data sources. Emerging paradigms such as Digital Twins (DTs)(Wang et al., 2024),
Explainable Al (XAl) (Sheik et al., 2025), and Reinforcement Learning (RL) (Zhu et al., 2025)are
also gaining traction, moving the field towards autonomous control, transparent decision-making,
and holistic plant management. This represents a fundamental shift from merely anticipating a
problem to learning the optimal solution and implementing it autonomously.
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Comparative Analysis Across Studies: Table 1 provides a concise comparison of selected
studies, outlining their objectives, methodologies, datasets, main findings, and notable strengths
and limitations in wastewater process modelling.

Table 1. Comparative Analysis Across Studies
Paper Objective Methods / | Dataset Key Strengths Limitations
Algorithms Findings
(Gholizad | Predict Artificial Tehran ANN-MLP Demonstrat | Single
ehetal, | effluent Neural Municipal | with es the WWTP
2024) Total Network - | WWTP, Sequential | importance | dataset;
Suspended | Multi- Iran; daily | Backward of feature limited
Solids Layer data 2016- | Selection selection; range of
(TSS) and Perceptron | 2020 (654 | achieved rigorous algorithms.
evaluate (ANN- samples). the highest | validation
the effect of | MLP), k- performanc | using k-fold
feature- Nearest e (R*= and grid-
selection Neighbour 0.80); search
methods. s (KNN), appropriate | cross-
AdaBoost; feature validation.
feature- selection
selection improved
methods accuracy by
(Correlatio ~6%.
n, Mutual
Informatio
n,
Sequential
Backward
Selection,
LASSO,
Tree-
Based,
Variance
Threshold)
(X.Xie et | Develop a Gaussian Benchmark | Clustering- | Tackles data | Simulation-
al, 2025) | multi- Mixture Simulation | based fluctuations; | only (no
output Model Model No. | hybrid combines real-world
hybrid (GMM) 2 (BSM2) model complement | data); MRVM
model for clustering; | platform; improved ary models; | is
Total Hybrid 364 days, performanc | comprehens | computation
Nitrogen Partial 34 944 sets | e by ive ally slow on
(TN), Least (15-min 42.17% validation. large
Soluble Squares - | intervals). | (RMSSD = datasets.
Nitrate Random 0.6189).
(SNO) and | Wavelet
Soluble Neural
Oxygen Network /
(S0); Multi-
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mitigate Relevance
single- Vector
model Machine
degradatio | (PLS-
nvia RWNN /
clustering. | MRVM).
(Aghdam | Predict Gene Seven GEP Provides Monthly (not
etal, influent Expression | Hong Kong | produced interpretabl | real-time)
2023) Biochemica | Programmi | municipal | the most e data; only
1 Oxygen ng (GEP), WWTPs; accurate mathematic | municipal
Demand MLP monthly results al plants;
(BODs) and | Neural data 2018- | (BODs R*= | expressions; | potential
Chemical Network, 2020. 0.727; COD | highlights BODs
Oxygen KNN, R?=0.861) | influential measuremen
Demand Gradient and explicit | parameters | terrors.
(COD); Boosting, equations. such as TSS.
derive Regression
mathemati | Trees,
cal Random
expression | Forest;
s and Monte
identify Carlo
influential | Simulation.
parameters
(Inbar & | Predict XGBoost, Kfar Saba - | XGBoost Long-term, Single
Avisar, effluent Random Hod achieved real-world WWTP;
2024) Total Forest, Hasharon 87% dataset; limited to
Phosphoru | Support WWTP, accuracy explicit TP;
s (TP) Vector Israel; 11- | and 85% focus on uncertain
compliance | Machine, year daily | precision; regulatory generalizabil
(binary ANN, Long | dataset (1 | Random compliance; | ity to other
classificatio | Short- 624 Foresthad | precision- climates.
n); analyse | Term samples). highest recall trade-
nutrient Memory recall off analysis.
removal (LSTM). (90%).
efficiency.
(Zhang et | Predict Random Industrial | Deep Demonstrat | Single-site
al,, 2025) | effluent Forest, Effluent learning es multi- dataset; COD
COD, MLP, Treatment | (LSTM, source data | prediction
Ammonia- | LSTM, Plant, GRU) fusion; still
Nitrogen Gated Anhui outperform | shows DL challenging.
(NH3-N), Recurrent | Province, ed advantages
TN and TP; | Unit China; one- | traditional on complex
integrate (GRU); year hourly | ML; GRU data;
multi- RReliefF data (8 689 | slightly includes
source for feature | sets). superior for | feature-
data; importanc COD/NH3- importance
compare e. N. analysis.
deep
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learning
with
traditional
ML.
(Pisa et Apply LSTM- Experimen | TL Dramatically | Focuses on
al, 2021) | Transfer based tal control- | controllers | cuts model- | control loops
Learning controllers | loop data reduced design and rather than
(TL) to with (details not | oscillations | training effluent-
design transfer- fully and time by quality
WWTP learning specified). | improved reusing prediction;
control strategies. Integral knowledge; | future
loops Absolute marked research
without Error by improvemen | directions
extensive 40-94% t over not clearly
process and Integral | conventiona | stated.
knowledge. Squared | controllers.
Error by
34-99%.
(Bghn et | Identify Linear Pilot Non-linear | Emphasises | Single pilot
al,, 2025) | foundation | models denitrificat | models fit practical reactor;
al (ElasticNet | ion reactor, | training issues; unmeasured
requiremen | ) and non- | Veas data best publicly factors (e.g.
ts for data- | linear facility, but linear shares code | biofilm
driven models Norway. models and data for | carrier loss)
modelling (LSTM, generalised | reproducibil | remain
in WWTPs. | Temporal better; ity. challenging.
Convolutio temperatur
nal e shifts
Network). strongly
affected
performanc
e.
(Alvi, Review Narrative None DL Bridges No original
2024) deep- review of | (review emerging as | knowledge data or
learning DL models | article). an gap between | model
methods (LSTM, alternative | two results.
and GRU) and to semi- research
application | mechanisti mechanistic | communitie
sin c models. models; s; identifies
wastewater highlights open
process limited research
modelling. Cross- problems.
community
understandi
ng.
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Conclusion

The integration of artificial intelligence and machine learning into wastewater treatment has
transitioned from a theoretical concept to a practical and transformative reality. Al models,
particularly advanced deep learning architectures like GRU and hybrid systems, have
demonstrated a superior capability to predict key effluent parameters and handle the complex, non-
linear dynamics of WWTPs. These models act as powerful soft sensors, providing operators with
the real-time insights necessary for proactive management, optimized energy consumption, and
ensured regulatory compliance.

The field has evolved beyond simply predicting future states. Emerging paradigms such as
Digital Twins and Reinforcement Learning are enabling the development of sophisticated
prescriptive control systems that can autonomously optimize complex, multi-objective functions.
Furthermore, advancements in data-centric strategies like feature selection and techniques like
Explainable Al are addressing the critical barriers of data quality and model interpretability, which
are essential for building trust and facilitating real-world adoption.

While challenges remaining, including data scarcity, a lack of standardization, and the need
for greater interdisciplinary collaboration, the future of Al in wastewater treatment is profoundly
promising. Continued research into hybrid and physics-informed models, coupled with an
expanded focus on multi-objective optimization and novel applications like resource recovery and
predictive maintenance, will pave the way for a new era of intelligent, sustainable, and resilient
wastewater management. The transition to a data-driven paradigm is not just about technological
advancement; it is about securing a cleaner, more sustainable future for our water resources.
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