Plasma Phys. Control. Fusion 50 (2008) 065012 (8pp)

Numerical experiments on plasma focus pinch current limitation

S Lee^{1,2,3}, P Lee², S H Saw³ and R S Rawat²

¹ Institute for Plasma Focus Studies, 32 Oakpark Drive, Chadstone, VIC 3148, Australia

² Nanyang Technology University, National Institute of Education, Singapore 637616,

Singapore

³ INTI International University College, 71800 Nilai, Malaysia

E-mail: leesing@optusnet.com.au

Received 18 February 2008 Published 11 April 2008 Online at stacks.iop.org/PPCF/50/065012

Abstract

Contrary to the general expectation that performance of a plasma focus would progressively improve with progressive reduction of its static inductance L_0 , a recent paper suggests that there is in fact an optimum L_0 below which although the peak total current increases progressively the pinch current and consequently the neutron yield of that plasma focus would not increase, but instead decreases. This paper describes the numerical experiments and results that led to this conclusion.

1. Introduction

A recent paper [1] suggests that for any plasma focus with a fixed capacitance C_0 , there is an optimum static inductance L_0 , below which the focus pinch current I_{pinch} no longer increases. This paper describes the numerical experiments and results leading to this conclusion of a plasma focus pinch current limitation effect.

We need to say right at the beginning that this I_{pinch} limitation effect is not the same⁴ as the I_{max} -related mechanism proposed by Nukulin and Polukhin [2] to explain an observed neutron saturation effect. In [2] it is postulated that in large plasma focus devices the peak total discharge current I_{peak} (which they denote as I_{max}) hardly increases with increase in storage energy through increase in bank capacitance C_0 . This 'tardiness' of I_{peak} leads to an equation which in the limit of large storage energies E tends towards a constant neutron yield Y_n . We state here that [2] deals with a special, though important, class of plasma focus discharge conditions where an increase in C_0 needs a corresponding increase in anode length z_0 . This in turn leads to a situation where the effective discharge impedance, which determines I_{peak} for any given operating voltage V_0 , seems to tend towards a constant value as E increases with C_0 , thus limiting I_{peak} . This work delves deeper into the problem. We show that in another

0741-3335/08/065012+08\$30.00 © 2008 IOP Publishing Ltd Printed in the UK

⁴ The authors thank a reviewer for stressing that this comparison of our work with that of [2] should be made.