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Abstract 

 

Solving nonlinear equations analytically becomes increasingly complex as functions grow in 

difficulty or when multiple nonlinear components are involved. This study aims to address that 

challenge by applying and comparing two well-established numerical methods—the Bisection 

Method and the False Position Method—in approximating the real roots of nonlinear equations. 

These iterative techniques are evaluated based on their accuracy, convergence rate, and 

computational efficiency. Specifically, the study investigates the number of iterations required, the 

magnitude of relative errors, and the number of significant digits in the final approximations. The 

results show that while both methods are capable of reaching the desired tolerance, the False 

Position Method converges faster and yields a higher accuracy score. The findings contribute to 

the practical selection of numerical methods by providing a comparative analysis that guides users 

in choosing the most appropriate technique based on the nature of the nonlinear function. 
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Introduction 

 

A system of nonlinear equations consists of two or more equations, with at least one being 

nonlinear, that are solved simultaneously. Nonlinear equations do not produce a straight line on a 

graph; instead, they appear as curves with slopes that vary at different points.  

The general form of a nonlinear equation is, 

 

𝑎𝑥2 + 𝑏𝑦2 = 𝑐 (1) 

where a, b, c are constants and a0 and x and y are variables. For example: 

2𝑥2 + 3𝑦2 = 7 (2) 

𝑎2 + 2𝑎𝑏 + 𝑏2 = 0 (3) 

https://creativecommons.org/licenses/by/4.0/
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Analytically solving such systems becomes increasingly difficult as the equations grow in 

complexity or when multiple nonlinear equations are coupled together. As a result, numerical 

methods have become essential tools for approximating the solutions of nonlinear systems. These 

methods aim to find roots of equations through iterative procedures, gradually converging to an 

acceptable solution within a specified tolerance. 

Two widely used numerical techniques for solving single-variable nonlinear equations are the 

Bisection Method and the False Position Method (Regula Falsi). Both are categorized as 

bracketing methods, which require that the initial interval contains at least one root (i.e., the 

function changes sign within the interval). These methods are valued for their reliability and 

simplicity, particularly when an approximate location of the root is already known. 

 

Objectives of the Study: 

 

To perform a comparative analysis of numerical methods—specifically the Bisection Method and 

the False Position Method—in solving nonlinear equations, with emphasis on their accuracy, 

convergence rate, and computational efficiency. 

1. To implement the Bisection and False Position methods for solving nonlinear 
equations. 

2. To evaluate the performance of each method in terms of: Number of iterations 
required to converge, accuracy of the approximated root, and its efficiency. 

3. To provide recommendations on the suitable use cases for each method based on the 
nature of the problem and required precision. 

 

A Bisection Method for Systems of Nonlinear Equations 

 

 Eiger, Sikorski, and Stenger (1984) introduced a significant extension of the classical 

bisection method to systems of nonlinear equations, presenting a multidimensional bracketing 

technique that guarantees convergence under the assumption of function continuity. Unlike 

traditional root-finding methods that require derivatives, their approach relies solely on function 

evaluations, making it robust and suitable for complex or poorly behaved systems. By dividing an 

initial hyper-rectangle into smaller subregions while preserving the root-bracketing condition, the 

method iteratively narrows the solution space. This work has influenced numerous subsequent 

studies in numerical analysis, particularly in interval methods and derivative-free solvers, and 

remains foundational in the development of reliable and rigorously convergent algorithms (Eiger, 

Sikorski, & Stenger, 1984). 

 

Nonlinear Equation by Using False Position Method 

 

 In their 2016 study, Tasleem and Joythi applied the False Position Method (Regula Falsi) 

to solve a nonlinear equation modeling the vertical deflection of a wooden bookshelf, using 

Young’s modulus as a key parameter. Their work highlights the method’s faster convergence when 

compared to the classical bisection method, particularly in structural analysis problems where 

computational efficiency is desirable. The paper emphasizes that while the bisection method is 

reliable, it often requires more iterations due to its uniform interval halving. In contrast, the false 

position method’s use of linear interpolation leads to quicker root estimation when the function's 

behavior is favorable. The study demonstrates the method’s effectiveness in practical engineering 



JOURNAL OF INNOVATION AND TECHNOLOGY   

eISSN:2805-5179                                                                                                    Vol. 2025, Issue 1, No.09 

 
http://ipublishing.intimal.edu.my/joint.html 

 

scenarios, supporting its continued use in solving continuous, real-valued nonlinear problems 

(Tasleem & Joythi, 2016). 

 

 

Methodology 

 

This section outlines the numerical methods used to solve nonlinear equations: the Bisection 

Method and the False Position Method. These techniques are iterative and fall under the category 

of bracketing methods, which require the solution to lie within a specified interval. 

 

Numerical Methods 

• Bisection Method 

 

In the Bisection Method, we begin with an interval that contains a solution. This interval 

is then divided in half, and one of the resulting halves will still contain the solution, while the other 

will not. We continue selecting the half that contains the solution and repeat the process until the 

interval becomes sufficiently small. However, if no solution is bracketed within the initial interval, 

the Bisection Method fails to locate one. It is classified as a bracketing method because it requires 

the solution to be enclosed within the initial interval. The method works by repeatedly solving for 

the midpoint of the selected interval. 

𝑁𝑛+1 =
𝑁0 + 𝑁1

2
 

(4) 

• False Position Method 

The False Position Method, also known as the Regula Falsi Method, is an improvement 

over the Bisection Method. Like Bisection, it starts with an interval that contains a root, but instead 

of simply halving the interval, it estimates the root using linear interpolation.  

This approach provides an approximate (or 'false') solution at each step. For the method to 

work correctly, it is essential that the function’s curve remains continuous within the initial 

interval. The iterative formula is given as follows: 

𝑁 = 𝑁0 − 𝑓(𝑁0) ×
𝑁1 + 𝑁0

𝑓(𝑁1) − 𝑓(𝑁0)
 

(5) 

 

• Algorithmic Approach for Numerical Methods 

Algorithms of Bisection Method: 

i. Begin the algorithm. 

ii. Read the interval endpoints 𝑎 and 𝑏, the error threshold 𝑒 and the maximum number of 

iterations 𝑁. 

iii. Calculate 𝑓𝑎 = 𝑓(𝑎) and 𝑓𝑏 = 𝑓(𝑏). 

iv. If 𝑓(𝑎) ∙ 𝑓(𝑏) > 0, it means that 𝑎 and 𝑏 do not bracket a root. In this case, output an error 

message, as this method cannot find the root, hence, print the error and go directly to the 

end. 

v. Set up variables to store the midpoint 𝑥 and its function value 𝑓(𝑥).  

vi. Find the midpoint 𝑥 = (𝑎 + 𝑏) 2⁄  and calculate 𝑓(𝑥). 
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vii. If 𝑓𝑎 ∙ 𝑓𝑥 < 0, then assign 𝑏 ← 𝑥, 𝑓𝑏 ← 𝑓𝑥, else assign 𝑎 ← 𝑥, 𝑓𝑎 ← 𝑓𝑥. 

viii. If |(𝑎 − 𝑏) 𝑎⁄ | is greater than or equal to the error tolerance 𝑒, repeat the iteration. 

ix. Stop the algorithm. 

 

Algorithms of False Position Method: 

i. Begin the algorithm 

ii. Read the initial value 𝑥0, 𝑥1, error threshold 𝑒 and set number of iterations. 

iii. Compute 𝑓𝑥0 = 𝑓(𝑥0) and 𝑓𝑥1 = 𝑓(𝑥1). 

iv. If 𝑓𝑥0 ∙ 𝑓𝑥1 > 0, then the interval [𝑥0, 𝑥1] does not bracket the root. Print an error 

message and terminate the process. 

v. Declare 𝑥, 𝑓𝑥, 𝑥𝑝𝑟𝑒𝑣 and set the iteration counter 𝑐 = 0. 

vi. Calculate the new iteration of x using 𝑥 = 𝑥0 − 𝑓(𝑥0)(𝑥1 − 𝑥0) (𝑓(𝑥1) − 𝑓(𝑥0))⁄  

vii. and evaluate 𝑓𝑥 = 𝑓(𝑥). 

viii. If 𝑓𝑥0 ∙ 𝑓𝑥 < 0 then assign 𝑥1 ← 𝑥, 𝑓𝑥1 ← 𝑓𝑥, else assign 𝑥0 ← 𝑥, 𝑓𝑥0 ← 𝑓𝑥.  

ix. If 𝑐 > 0 and |𝑥𝑝𝑟𝑒𝑣 − 𝑥| < 𝑒∣, then assign values. 

x. Assign 𝑥𝑝𝑟𝑒𝑣 ← 𝑥, 𝑐 ← 𝑐 + 1 and repeat the iteration. 

xi. Output the solution 𝑥 as the root.  

xii. Stop the algorithm. 

Application for Numerical Methods 

0 = [(1.7 × 10−19)(73.81971171 ) (
1

2
(𝑁 + √𝑁2 + 4(6.21 × 109)2)) (6.5 × 106)] − 1 

𝜌 = [(1.7 × 10−19)(73.81971171 ) (
1

2
(𝑁 + √𝑁2 + 4(6.21 × 109)2)) (6.5 × 106)] − 1 

𝑓(𝑁) = [(1.7 × 10−19)(73.81971171 ) (
1

2
(𝑁 + √𝑁2 + 4(6.21 × 109)2)) (6.5 × 106)] − 1  

Assume that 𝑁 = 0 and 2.5 × 1010 

Note: The approximate root should satisfy ∈𝑎 % ≤∈𝑠 %; ∈𝑠 % = 0.5% before making a 

conclusion. The formula for the relative percentage error is: 

∈𝑎 % = |
𝑀𝑛𝑒𝑤 − 𝑀𝑜𝑙𝑑

𝑀𝑛𝑒𝑤
| × 100% 

(6) 

Bisection Method: 

Using equation 4, roots between can be calculated as 

𝑁0 = 0; 𝑓(𝑁0) =  −0.49344544726039 < 0 

 𝑁1 = 2.5𝑥1010; 𝑓(𝑁1) = 1.15816565251362 > 0 

 

1st iteration: 

𝑁2 =  
0 + 2.5𝑥1010

2
= 1.25𝑥1010 

𝑓(𝑁2) = 0.22850457598474 > 0 
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Roots between 

𝑁0 = 0 ; 𝑓(𝑁0) =  −0.49344544726039 < 0 

𝑁2 =  1.25𝑥1010; 𝑓(𝑁2) = 0.22850457598474 > 0 

𝑁2 →  𝑁1  

 

2nd iteration: 

𝑁2 =  
0 + 1.25𝑥1010

2
=  6.25𝑥109 

𝑓(𝑁2) = −0.17801463227082 < 0 

Using equation 6, relative percent error is: 

∈𝑎 % =  |
6.25𝑥109 − 1.25𝑥1010

6.25𝑥109
| × 100% = 100% 

Number of significant digits at least correct to 0. 

 | ∈𝑎 %| ≤ 0.5 x 10 2−m → 100 ≤ 0.5 x 10 2−m → =  −0.3010 

 

Roots between 

𝑁2 = 6.25𝑥109; 𝑓(𝑁2) = −0.17801463227082 < 0 

𝑁1 =  1.25𝑥1010; 𝑓(𝑁1) = 0.22850457598474   > 0 

𝑁2 →  𝑁0 

Note: As we keep repeating the same process of iteration, we will come up with 10th iteration. 

 

10th iteration: 

𝑁2 =  
0.9082031250𝑥1010 + 9130859375     

2
= 9106445313 

𝑓(𝑁2) = −0.00046360875066 < 0 

Using equation 6, relative percent error is: 

∈𝑎 % = |
9106445313 − 9130859375

9106445313
| = 0.2681% 

 

Number of significant digits at least correct 

| ∈𝑎 %| ≤ 0.5 x 10 2−m → 0.2681 ≤ 0.5 x 10 2−m → = 2.2707 

Therefore, the number of significant digits is at least correct to 2. 

The approximate root satisfies: 0.2681% ≤ 0.5%. Therefore, the approximate root of the function 

using the Bisection Method is 9106445313, obtained at the 10th iteration, and is accurate to at least 

two significant digits: ≈ 9106445313 (10th iteration). 
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False Position Method: 

Using equation 5, 𝑁 = 𝑁0 − 𝑓(𝑁0) ×
𝑁1−𝑁0

𝑓(𝑁1)−𝑓(𝑁0)
 , limiting it to 6 decimal places, root between 

is: 

𝑁0 = 0; 𝑓(𝑁0) = −0.493445 < 0   

𝑁1 = 2.5𝑥1010; 𝑓(𝑁1) =  1.158165   > 0 

 

1st iteration: 

𝑁2 = 0 − (−0.493445) ×
2.5 𝑥1010 − 0

1.158165 + 0.493445
= 7469146791 

𝑁2 = 7469146791  ; 𝑓(𝑁2) = −0.104269 < 0 

𝑁1 = 2.5𝑥1010 ; 𝑓(𝑁1) =  1.158165  > 0 

𝑁2 →  𝑁0 

 

2nd iteration: 

𝑁2 = 7469146791 − (−0.104269) ×
2.5 𝑥1010 − 7469146791 

1.158165 − (−0.104269)
= 8917082355 

𝑓(𝑁2) = −0.012722 < 0 

Using equation 6, relative percent error is: 

∈𝑎 % = |
8917082355 − 7469146791

8917082355
| × 100% = 16.2378% 

Number of significant digits at least correct: 

 | ∈𝑎 %| ≤ 0.5 x 10 2−m → 16.2378 0.5x 10 2−m → = 0.4884 

Therefore, the number of significant digits is at least correct to 0. 

Roots between 

𝑁2 = 8917082355; 𝑓(𝑁2) = −0.012722 < 0 

𝑁1 = 2.5𝑥1010; 𝑓(𝑁1) =  1.158165 > 0 

𝑁2 →  𝑁0 

 

3rd iteration: 

𝑁2 = 8917082355 − (−0.012722) ×
2.5 𝑥1010 − 8917082355 

1.158165 − (−0.012722)
= 9091827402 

𝑓(𝑁2) = −0.001412 < 0 

Using equation 6, relative percent error is: 

∈𝑎 % = |
9091827402 − 8917082355

9091827402
| × 100% =  1.9220% 
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Number of significant digits at least correct: 

| ∈𝑎 %| ≤ 0.5 x 10 2−m → 1.9220 ≤ 0.5 x 10 2−m → = 1.4152 

Therefore, the number of significant digits is at least correct to 1. 

Roots between  

𝑁2 = 9091827402; 𝑓(𝑁2) = −0.001412 < 0 

𝑁1 = 2.5𝑥1010; 𝑓(𝑁1) =  1.158165 > 0 

𝑁2 →  𝑁0 

 

4th iteration: 

𝑁2 = 9091827402 − (−0.001412) ×
2.5 𝑥1010 − 9091827402 

1.158165 − (−0.001412)
= 9111198535 

𝑓(𝑁2) = −0.000155 < 0 

Using equation 6, relative percent error is: 

∈𝑎 % = |
8917082355 − 7469146791

8917082355
| × 100% =  0.2126% 

Number of significant digits at least correct: 

| ∈𝑎 %| ≤ 0.5 x 10 2−m → 0.2126 ≤ 0.5 x 10 2−m → = 2.3714 

Therefore, the number of significant digits is at least correct to 2. 

 

The approximate relative error is 0.2126%, which is less than the tolerance of 0.5%. Therefore, 

the approximate root of the function using the False Position Method (FPM) is 9111198535, 

obtained at the 4th iteration, and accurate to at least two significant digits: ≈9111198535 (4th 

iteration). 

 

 

Results and Discussion 

 

This section discusses the outcomes obtained from applying the Bisection and False Position 

Methods to solve a given nonlinear equation. The performance of each method was evaluated in 

terms of the number of iterations required for convergence, relative percent error, and the number 

of significant digits in the approximated root. 

 

Application of the Bisection Method  

Table 1.1: Summary table of Bisection Method. 

Iteration # 𝑁0 𝑓(𝑁0) 𝑁1 𝑓(𝑁1) 

1 0 −0.49344544726039 2.5𝑥1010 1.15816565251362 

2 0 −0.49344544726039 1.25𝑥1010 0.22850457598474 

3 6.25𝑥109 −0.17801463227082 1.25𝑥1010 0.22850457598474 
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4 6.25𝑥109 −0.17801463227082 0.9375𝑥1010 0.01702752237385 

5 0.78125𝑥1010 −0.08292756412361 0.9375𝑥1010 0.01702752237385 

6 0.859375𝑥1010 −0.03350754496888 0.9375𝑥1010 0.01702752237385 

7 0.8984375𝑥1010 −0.0083732881949 0.9375𝑥1010 0.01702752237385 

8 0.8984375𝑥1010 −0.0083732881949 0.91796875𝑥1010 0.00429454124806 

9 0.9082031250𝑥1010 −0.00220476094393 0.91796875𝑥1010 0.00429454124806 

10 0.9082031250𝑥1010 −0.00220476094393 9130859375 0.0011214184718 

 

Table 1.2: Summary table of Bisection Method. 

Iteration 

# 
𝑁2 𝑓(𝑁2) Update ∈𝑎 % 

Correct 

Sig. Digits 

1 1.25𝑥1010 0.22850457598474 𝑁2 →  𝑁1 N/A N/A 

2 6.25𝑥109 −0.17801463227082 𝑁2 →  𝑁0 100 0 

3 0.9375𝑥1010 0.01702752237385 𝑁2 →  𝑁1 33.3333 0 

4 0.78125𝑥1010 −0.08292756412361 𝑁2 →  𝑁0 20 0 

5 0.859375𝑥1010 −0.03350754496888 𝑁2 →  𝑁0 9.0909 0 

6 0.8984375𝑥1010 −0.0083732881949 𝑁2 →  𝑁0 4.3478 1 

7 0.91796875𝑥1010 0.00429454124806 𝑁2 →  𝑁1 2.1277 1 

8 0.9082031250𝑥1010 −0.00220476094393 𝑁2 →  𝑁0 1.0753 1 

9 9130859375 0.0011214184718 𝑁2 →  𝑁1 0.5348 1 

10 9106445313 −0.00046360875066 𝑁2 →  𝑁0 0.2681 2 

 

The Bisection Method began with an interval known to contain the root. Each iteration halved the 

interval, narrowing down the root’s location. After 10 iterations, the method yielded an 

approximate root of 9106445313, with a relative percent error below 0.5%, and accuracy correct 

to at least two significant digits. While this method is slow due to uniform interval halving, it is 

highly reliable and guarantees convergence if the root is bracketed. 

 

Application of the False Position Method 

Table 2.1: Summary table of False Position Method. 

Iteration # 𝑁0 𝑓(𝑁0) 𝑁1 𝑓(𝑁1) 

1 0 −0.493445 2.5𝑥1010 1.158165 

2 7469146791 −0.104269 2.5𝑥1010 1.158165 

3 8917082355 −0.012722 2.5𝑥1010 1.158165 

4 9091827402 −0.001412 2.5𝑥1010 1.158165 
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Table 2.2: Summary table of False Position Method. 

 

 

The False Position Method also started with the same bracketing interval but used linear 

interpolation to estimate the root. The method converged in just 4 iterations, yielding an 

approximate root of 9111198535 with a relative error of 0.2126% and two correct significant 

digits. The use of slope-based interpolation allowed for faster convergence, especially when the 

function behaved smoothly within the interval. 

 

Accuracy Computation 

Accuracy Criteria/Weight: 

𝑓(approx. root): 30% (closer to zero is better) 

Relative absolute percent error ( ∈𝑎%): 30% (smaller is better) 

Number of iterations: 20% (smaller is better) 

Number of at least Correct Significant digits: 20% (higher is better) 

Total weight: 100% 

Formula: 

𝑆 =  [0.30 (1 −
|𝑓(𝑎𝑝𝑝𝑟𝑜𝑥. 𝑟𝑜𝑜𝑡)|

0.000705
) + 0.30 (1 −

∈𝒂 %

0.3211
) + 0.20 (1 −

No. of Iterations

11
)

+ 0.20 (
Correct  digits

4
)] 10 

where:  

𝑆 = 𝐴𝑐𝑐𝑜𝑟𝑎𝑐𝑦 𝑙𝑒𝑣𝑒𝑙 (10 as the highest) 

|𝑓(𝑎𝑝𝑝𝑟𝑜𝑥. 𝑟𝑜𝑜𝑡)| = The absolute value of the 𝒇(𝒂𝒑𝒑𝒓𝒐𝒙. 𝒓𝒐𝒐𝒕) in the table 

∈𝒂 % = Relative absolute percent error 

No. of Iterations = Number of iterations 

Correct  digits = Number of at least correct significant digits 

 

Iteration# 𝑁2 𝑓(𝑁2) Update ∈𝑎 % 
Correct Sig. 

Digits 

1 7469146791 −0.104269 𝑁2 →  𝑁0 N/A N/A 

2 8917082355 −0.012722 𝑁2 →  𝑁0 16.2378 0 

3 9091827402 −0.001412 𝑁2 →  𝑁0 1.9220 1 

4 9111198535 −0.000155 𝑁2 →  𝑁0 0.2126 2 
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Accuracy Computation: 

Bisection Method: 

𝑆 =  [0.30 (1 −
0.00046360875066

0.000705
) + 0.30 (1 −

0.2681

0.3211
) + 0.20 (1 −

10

11
) + 0.20 (

2

4
)] 10 =  2.7042 

 

False Position Method (FPM): 

𝑆 =  [0.30 (1 −
0.000155

0.000705
) + 0.30 (1 −

0.2126

0.3211
) + 0.20 (1 −

4

11
) + 0.20 (

2

4
)] 10 = 5.6269 

 

Comparative Analysis  

This section presents a side-by-side comparison of the Bisection Method and the False Position 

Method based on their computed results, including number of iterations, relative percent error, 

significant digits, and final accuracy scores. 

 

Table 3: Comparison table of the two methods. 

Method Approximate 

Roots 

Iterations Relative Error 

(%) 

Significant 

Errors 

Accuracy Score 

Bisection 

Method 

9106445313 10 0.2681 2 2.7042 

False Position 

Method 

9111198535 4 0.2126 2 5.6269 

 

 

The results of the comparative analysis demonstrate that both the Bisection Method and 

the False Position Method (FPM) were able to approximate the root of the nonlinear equation to 

at least two correct significant digits. However, the methods differed significantly in terms of their 

efficiency and overall performance. The False Position Method achieved convergence in just four 

iterations with a relative error of 0.2126%, while the Bisection Method required ten iterations to 

meet the same tolerance threshold. These numerical results are reflected in the computed accuracy 

scores: 5.6269 for the False Position Method and 2.7042 for the Bisection Method, indicating that 

FPM outperformed Bisection in terms of computational efficiency and accuracy under the given 

conditions. Despite this, the Bisection Method maintains an advantage in terms of simplicity and 

reliability, particularly when applied to functions with irregular or unpredictable behavior. 

Therefore, the findings support the notion that while the False Position Method is preferable for 

rapid convergence with smooth and continuous functions, the Bisection Method remains more 

robust and dependable when dealing with functions that may not conform to ideal conditions. 

Method selection, thus, should be informed by the specific characteristics of the function being 

solved. 
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Conclusion 

 

This study evaluated and compared the performance of the Bisection Method and the False 

Position Method (FPM) in solving nonlinear equations, with specific emphasis on convergence 

speed and accuracy. The analysis demonstrated that both methods are reliable root-finding 

techniques based on bracketing approaches, each with distinct advantages depending on the nature 

of the function involved.  

In terms of convergence speed, the False Position Method significantly outperformed the 

Bisection Method. FPM achieved the desired tolerance level in only four iterations, whereas the 

Bisection Method required ten iterations to reach a comparable level of precision. This difference 

in iteration count reflects the more dynamic nature of the False Position Method, which utilizes 

linear interpolation to accelerate convergence, in contrast to the uniform interval halving of the 

Bisection approach.  

About accuracy, both methods were able to produce approximations with at least two 

correct significant digits, satisfying the required error tolerance. However, the computed accuracy 

score for the False Position Method was 5.6269, more than double that of the Bisection Method's 

2.7042, indicating superior performance in terms of overall precision and computational 

efficiency.  

Ultimately, the choice between methods should be based on the characteristics of the 

function to be solved. The False Position Method is more suitable for continuous and functions 

where rapid convergence is desirable. In contrast, the Bisection Method remains advantageous for 

cases involving irregular function behavior, offering greater stability even when fewer 

assumptions can be made about the function's structure. The findings affirm that while both 

methods are effective, their efficiency and accuracy vary depending on the problem context. 
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