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Proof of Kochen–Specker Theorem: Conversion of Product Rule to Sum Rule *
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Valuation functions of observables in quantum mechanics are often expected to obey two constraints called the
sum rule and product rule. However, the Kochen–Specker (KS) theorem shows that for a Hilbert space of quantum
mechanics of dimension 𝑑 ≥ 3, these constraints contradict individually with the assumption of value definiteness.
The two rules are not irrelated and Peres [Found. Phys. 26 (1996) 807] has conceived a method of converting
the product rule into a sum rule for the case of two qubits. Here we apply this method to a proof provided by
Mermin based on the product rule for a three-qubit system involving nine operators. We provide the conversion
of this proof to one based on sum rule involving ten operators.
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Quantum mechanical states impose statistical re-
strictions on the results of measurements. Some physi-
cists think that the restriction is due to the incom-
plete description of the quantum system by the states
and hence they propose hidden variable theories in
the hope that these would give a complete descrip-
tion. The Kochen–Specker (KS) theorem provides a
strong argument showing that even if hidden variables
do exist and can be used to interpret quantum me-
chanics, the value assignments made must be contex-
tual. A value of an observable is said to be contextual
if the value measured depends on measurement con-
text. Apart from noncontextuality, value definiteness
is another old belief held by physicists which states
that all (compatible) observables of a physical sys-
tem have definite values at all times. Unfortunately,
applying noncontextuality and value definiteness to
a quantum mechanical system would give rise to a
contradiction.[1−3]

In quantum mechanics, observables are repre-
sented by Hermitian operators that have real eigen-
values. Quantum mechanics requires that the results
of measuring an observable be eigenvalues of the cor-
responding Hermitian operator. Quantum mechanics
further requires that if observables 𝐴, 𝐵,𝐶, . . . belong
to mutually commuting subsets of the observables and
satisfy 𝑓(𝐴, 𝐵, 𝐶, . . .) = 0, then the only allowed re-
sults of a simultaneous measurement of 𝐴, 𝐵,𝐶, . . .
are the set of simultaneous eigenvalues 𝑣(𝐴), 𝑣(𝐵),
𝑣(𝐶), . . . constrained by 𝑓(𝑣(𝐴), 𝑣(𝐵), 𝑣(𝐶), . . .) = 0.
In particular, this can be expressed as a sum rule:
(a) If 𝐴, 𝐵, 𝐶 are the compatible observables and
𝐶 = 𝐴 + 𝐵, then 𝑣(𝐶) = 𝑣(𝐴) + 𝑣(𝐵). Alterna-
tively, one can have the product rule, i.e. (b) if 𝐴, 𝐵, 𝐶
are the compatible observables and 𝐶 = 𝐴 · 𝐵, then

𝑣(𝐶) = 𝑣(𝐴) · 𝑣(𝐵).[1]

The KS theorem states that for Hilbert space of
quantum mechanical state vectors of dimension > 2,
assumptions of value definiteness contradict either the
sum rule or product rule. To avoid contradiction and
to maintain the value definiteness, the measured val-
ues of observables must be contextual.

Consider a pair of spin-1/2 particles and their spin
observables. The following magic square in Table 1
consists of nine tensor-product spin operators given
by Mermin.[3] As usual, 𝜎𝑥, 𝜎𝑦, 𝜎𝑧 are the Pauli ma-
trices related to the individual spin observables.

Table 1. Mermin’s magic square.

𝐼 ⊗ 𝜎𝑧 𝜎𝑧 ⊗ 𝐼 𝜎𝑧 ⊗ 𝜎𝑧

𝜎𝑥 ⊗ 𝐼 𝐼 ⊗ 𝜎𝑥 𝜎𝑥 ⊗ 𝜎𝑥

𝜎𝑥 ⊗ 𝜎𝑧 𝜎𝑧 ⊗ 𝜎𝑥 𝜎𝑦 ⊗ 𝜎𝑦

Each row and each column is a triad of commuting
operators. Each entry of the operator has eigenvalue
1 or −1. We can easily check the validity of following
six functions,

(𝐼 ⊗ 𝜎𝑧)(𝜎𝑧 ⊗ 𝐼)(𝜎𝑧 ⊗ 𝜎𝑧) = 𝐼 ⊗ 𝐼,

(𝜎𝑥 ⊗ 𝐼)(𝐼 ⊗ 𝜎𝑥)(𝜎𝑥 ⊗ 𝜎𝑥) = 𝐼 ⊗ 𝐼,

(𝜎𝑥 ⊗ 𝜎𝑧)(𝜎𝑧 ⊗ 𝜎𝑥)(𝜎𝑦 ⊗ 𝜎𝑦) = 𝐼 ⊗ 𝐼,

(𝐼 ⊗ 𝜎𝑧)(𝜎𝑥 ⊗ 𝐼)(𝜎𝑥 ⊗ 𝜎𝑧) = 𝐼 ⊗ 𝐼,

(𝜎𝑧 ⊗ 𝐼)(𝐼 ⊗ 𝜎𝑥)(𝜎𝑧 ⊗ 𝜎𝑥) = 𝐼 ⊗ 𝐼,

(𝜎𝑧 ⊗ 𝜎𝑧)(𝜎𝑥 ⊗ 𝜎𝑥)(𝜎𝑦 ⊗ 𝜎𝑦) = −𝐼 ⊗ 𝐼. (1)

According to the product rule, we have

𝑣(𝐼 ⊗ 𝜎𝑧)𝑣(𝜎𝑧 ⊗ 𝐼)𝑣(𝜎𝑧 ⊗ 𝜎𝑧) = 𝑣(𝐼 ⊗ 𝐼),

𝑣(𝜎𝑥 ⊗ 𝐼)𝑣(𝐼 ⊗ 𝜎𝑥)𝑣(𝜎𝑥 ⊗ 𝜎𝑥) = 𝑣(𝐼 ⊗ 𝐼),

𝑣(𝜎𝑥 ⊗ 𝜎𝑧)𝑣(𝜎𝑧 ⊗ 𝜎𝑥)𝑣(𝜎𝑦 ⊗ 𝜎𝑦) = 𝑣(𝐼 ⊗ 𝐼),

𝑣(𝐼 ⊗ 𝜎𝑧)𝑣(𝜎𝑥 ⊗ 𝐼)𝑣(𝜎𝑥 ⊗ 𝜎𝑧) = 𝑣(𝐼 ⊗ 𝐼),
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