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Abstract 

 

An effective strategy for managing energy and sustainability is the accurate forecasting of 

household electricity consumption. A new challenge arises in consumption patterns for traditional 

models, which face difficulties in variability and data variety. This study aims to bridge the gap by 

proposing a novel technique called the Mountain Gazelle optimizer-driven Malleable Random 

Forest technique (MG-MRF), for improving electricity consumption prediction. This has enabled 

MG-MRF to model different consumption patterns as well as manage variability in the data. The 

study collected extensive datasets from different households, and those datasets had to undergo 

preprocessing to ensure integrity. Evaluation results of the approach further underscore the 

potential of MG-MRF to give accurate and dependable predictions, consequently allowing 

informed decision-making for the consumption of energy. The proposed method outperformed the 

traditional models with a prediction accuracy of 98.2%, precision of 94%, recall of 90%, and an 

f1-score of 92%. This study emphasizes the importance of adaptive modeling techniques in 

understanding and predicting household electricity usage, enabling the development of more 

effective energy management strategies. The experimental results advocate and contribute to 

sustainable energy practices by raising consumer awareness regarding their electrical 

consumption.  
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Introduction 

 

As people demand increasingly higher amounts of electricity worldwide, coupled with a rapidly 

growing awareness of renewable energy, forecasting household electricity usage has become 

essential. In such regard, Alzoubi (2022) stated that better electricity usage forecasting is 

associated with better resource allocation. The increase in grid stability can be utilized for better 

planning of the energies production, resulting in reduced environmental impacts, as argued by 

Liaqat et al. (2021).  

 

Traditional approaches like time-series models are no longer sufficient to deal with the 

uncertainty and variability that characterize household energy use, which is mainly dependent on 

weather, user behavior, and appliance efficiency, as noted by Al Misba et al. (2023). New advances 

in data-driven methods have enabled the use of more sophisticated models that, through a simple 

structure can capture subtle patterns of electricity use, according to Wang et al. (2021).  

 

Hamdoun et al. (2021) emphasized that the capabilities of machine learning (ML) 

algorithms when combined with large datasets, provide greater precision through the analysis of 

temporal dependency. Some methods, such as random forest (RF) and long short-term memory 

(LSTM), demonstrated improved self-reliance and accuracy in predictions, which can further 

enhance the energy management at individual and systemic levels, according to Zhou et al. (2022).  

 

According to Gebremeskel et al. (2021), utility firms will benefit from better balancing of 

supply and demand, reduced peak energy production costs, and enhanced public education on 

appliance use for energy conservation. Zaidan et al. (2022) argue that the intensification of global 

efforts to optimize energy consumption accurate predictions of household electricity usage crucial 

for creation of an efficient and sustainable environment. 

 

This paper aims to predict household electricity consumption using the Mountain Gazelle 

optimizer-driven Malleable Random Forest (MG-MRF) model, which would ultimately provide 

insight into efficient energy management and further promote the use of sustainable electricity. 

 

The study is broadly classified as follows: Section 2 related works based on the prediction 

of household's electrical consumption. In Section 3, data collection and preprocessing together 

with the proposed MG-MRF approach are discussed. The results are presented in Section 4, where 

the performances of different models are shown. The study is concluded with some insightful 

observations and possible future developments in Section 5.  

  

 

Methodology 

 

The method first gathers the house electricity consumption dataset. Then, data preprocessing using 

min-max normalization is performed to improve uniform scaling. After that, the Mountain Gazelle 

optimizer-driven Malleable Random Forest (MG-MRF) model is developed, and the results are 

obtained. Figure 1 depicts the overall flow of the research.  
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Figure 1. Overall flow of the research 

 

1. Dataset 

The household electricity consumption dataset consists of measurements at minute 

intervals of reactive and active power, energy sub-metering and, voltage values in a single 

household. It includes variables like global reactive power, active power, sub-metering, and 

voltage data from different appliances. 

 

2. Min-max normalization for data preprocessing 

Min-max normalization is the most commonly utilized method for data preprocessing. In 

this technique, each component's basic prediction is placed at a value of 0, the highest possible 

value is placed at a value of 1, and any additional value is located at a decimal fall between 0 and 

1. Equation (1) represents the general formula for calculating min-max normalization.   

𝑊𝑠𝑐𝑎𝑙𝑒𝑑 =
(𝑤−𝑤𝑚𝑖𝑛)

(𝑤𝑚𝑎𝑥−𝑤𝑚𝑖𝑛)
         (1) 

 

where, 𝑤𝑚𝑖𝑛 is the minimum possible value of 𝑊, and 𝑤𝑚𝑎𝑥 is the maximum possible value of 

𝑊. 

 

3. Mountain Gazelle optimizer-driven Malleable Random Forest (MG-MRF) 

The mountain gazelle optimizer-driven malleable random forest (MG-MRF) model for 

electricity consumption in a household is one of the advanced predictive tools, in which dynamic 

consumption patterns are applied to optimize model parameters for conventional RF using the 

mountain gazelle optimizer. This fusion encourages efficiencies and accuracies that make 

prediction of electric consumption a simple task. Further, the MG-MRF model can easily handle 

large amounts of data, and it often uses a real-time smart grid system that would enhance the efforts 

toward energy management. 

 

3.1. Malleable Random Forest (MRF) 

MRF adapts to any characteristic of the input data while at the same time improving its 

prediction of electricity consumption by a household. Improvement of adaptability towards 

changing usage, patterns along with robustness of calculation enhances prediction accuracy, which 

aids in effective energy management and helps households make informed decisions about power 

consumption.  

 

To increase the system's classification accuracy, the suggested MRF model optimizes the 

decision tree node splitting algorithm through an adaptive parameter selection procedure. The 
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different qualities will result in different decision trees when alternative node-splitting algorithms 

are chosen for the same data set. The accuracy of the MRF algorithm is found to be different.  

 

Consequently, in addition to creating a new splitting rules for selecting and dividing node 

characteristics, the decision tree will be selected first, followed by choosing the best attribute to 

split the nodes. The node-splitting algorithm is divided into a linear combination. By dividing the 

sample set 𝐶 using characteristics 𝑏, the node splitting formula of Equations (2) and (3) displays 

the 𝐺𝑎𝑖𝑛 and the 𝐺𝑖𝑛𝑖 index.  

𝐺𝑎𝑖𝑛(𝐶, 𝑏) = 𝐸𝑛𝑡(𝐶) − ∑
|𝐶𝑢|

|𝐶|
𝐸𝑛𝑡(𝐶𝑢)𝑈

𝑢=1               (2)  

𝐺𝑖𝑛𝑖(𝐶, 𝑏) = ∑
|𝐶𝑢|

𝐶
𝐺𝑖𝑛𝑖(𝐶𝑢)𝑈

𝑢=1                 (3) 

 

Where 𝐶𝑢 signifies that every sample in the 𝐶 with a value of 𝑏𝑢 on the attribute 𝑏 is contained in 

the 𝑢 branch node. Equation (4) defines the entropy 𝐸𝑛𝑡(𝐶) and Equation (5) defines the value of 

𝐺𝑖𝑛𝑖(𝐶) that calculates the degree of inequality. 

𝐸𝑛𝑡(𝐶) = −∑ 𝑜𝑙𝑙𝑜𝑔2𝑜𝑙
|𝑧|
𝑙=1                 (4) 

𝐺𝑖𝑛𝑖(𝐶) = ∑ ∑ 𝑜𝑙𝑜𝑙′ = 1 − ∑ 𝑜𝑙2
|𝑧|
𝑙=1𝑙′≠𝑙

|𝑧|
𝑙=1               (5) 

 

Equation (6) provides the combination node splitting formula and adaptive parameter selection 

procedure. The goal of node splitting is to enhance the quality of the dataset after division. 

𝐺 = min
∝,𝛽𝜖𝑄

𝐸{𝐶, 𝑏} = 𝛼𝐺𝑖𝑛𝑖(𝐶, 𝑏) − 𝛽𝐺𝑎𝑖𝑛(𝐶, 𝑏)  

𝑠. 𝑡. {
𝛼 + 𝛽 = 1
0 ≤ 𝛼, 𝛽 ≤ 1

                 (6) 

 

Where the weight coefficient of variable splitting is denoted by the symbols 𝛼, 𝑎𝑛𝑑 𝛽. 𝐺 has a low 

value in the interim period. To find the best combination of parameters, the adaptive parameter 

selection method is used. The accuracy rate and the categorization error rate are utilized in the test 

to assess the efficiency of the MRF model. Equation (7) defines the sample 𝐶′𝑠 categorization 

error rate as follows: 

𝐹(𝑒; 𝐶) =
1

𝑛
∑ 𝐽𝐽(𝑒(𝑤𝑗) ≠ 𝑧𝑗)
𝑛
𝑗=1                (7) 

 

The rate of accuracy is described as follows in Equation (8). 

𝑎𝑐𝑐(𝑒; 𝐶) =
1

𝑛
∑ 𝐽𝐽(𝑒(𝑤𝑗) = 𝑧𝑗) = 1 − 𝐹(𝑒; 𝐶)𝑛
𝑗=1              (8) 

 

3.2. Mountain Gazelle optimizer (MG) 

The Mountain Gazelle optimizer (MG) is an optimizer that applies mountain gazelle 

foraging behavior to determine household electricity consumption. This will seek out an efficient 

solution in the search space so that the parameters of predictive models are refined to enhance the 

accuracy and reliability in forecasting electricity usage patterns based on historical information 

and influence factors. The social hierarchy of the mountain gazelle herd served as the model for 

one of the created population-based on optimization algorithms known as the Mountain Gazelle 

optimizer (MG).  
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This algorithm was inspired by nature. Four mountain gazelle behaviors are included in the 

mathematical structure of the MG algorithm: bachelor male herds (BMH), maternity herds (MH), 

migration in search of food (MSF), and territorial solitary males (TSM). A resolution to the 

optimization issue (𝑊) with 𝐶 response variables is represented by each gazelle in the population.  

 

The MG algorithm defines a significant amount of random numbers, with the following 

notations for each. 𝑀(𝐶), where 𝐶 is the number of elements, defines vectors of random numbers 

derived from a normal distribution. Random integers in the range [1, 2] are defined as 𝑞𝑗, and 

random numbers that follow an even distribution inside the range [0, 1] are defined as 𝑞. Initially, 

the four coefficients must be defined to characterize four behaviors numerically, as indicated by 

Equation (9). 

𝐶𝑜𝑓 =

{
 

 
𝑏 + 1 + 𝑞1
𝑏.𝑀1(𝐶)
𝑞2(𝐶)

𝑀2(𝐶).𝑀3(𝐶)
2. cos(2𝑞3. 𝑀4(𝐶))

              (9) 

 

Where, 𝑏 = −1 + 𝑖𝑡𝑒𝑟. (
−1

max _𝑖𝑡𝑒𝑟
). After that, vector 𝐸 is defined by using Equation (10). 

𝐸 = 𝑀5(𝐶). exp (2 − 𝑖𝑡𝑒𝑟.
2

max _𝑖𝑡𝑒𝑟
)        (10) 

 

A simple normal random vector is left in the final iteration of the second half of the duplication of 

𝐸, which initiates with values larger than 1 (depending on the extreme amount of interactions) and 

converges exponentially to 1. Equation (11) defines the young male herd coefficient vector, and 

all appropriate values are defined for that purpose. 

𝐵𝐻 = 𝑊𝑟𝑎. 𝑞1 + 𝑁𝑝𝑟 . 𝑞2              (11)  

 

Where 𝑊𝑟𝑎 is a randomly chosen response from the final third of the population. For the chosen 

population, 𝑁𝑝𝑟 stands for mean percentage, averaged across all dimensions in the input vector. 

The algorithm's TSM component simulates the actions of mature male gazelles that construct and 

safeguard their territories. Equation (12) describes how it is employed in the algorithm to improve 

the exploitation ability. 

𝑇𝑆𝑀 = 𝑊1 − |(𝑞𝑗1. 𝐵𝐻 − 𝑞𝑗2.𝑊𝑠). 𝐸|𝐶𝑜𝑓𝑞             (12) 

 

Where 𝐶𝑜𝑓𝑞 is the randomly chosen coefficient from Equation (9), 𝑊𝑠 is the agent that is currently 

being updated, and 𝑊1 is the best solution that has been discovered so far. The second behavior, 

MH, is being characterized by females and their offspring, reflecting an equilibrium between 

exploration and exploitation in the algorithm. Premature convergence is avoided and diversity in 

the solution space is ensured by this system expressed in equation (13). 

𝑀𝐻 = 𝐵𝐻 + 𝐶𝑜𝑓𝑞 + (𝑞𝑗3.𝑊1 − 𝑞𝑗4.𝑊𝑟𝑎𝑛𝑑). 𝐶𝑜𝑓𝑞            (13) 

 

Where 𝑊𝑟𝑎𝑛𝑑 refers to a population-wide solution, that was randomly selected. In order to simulate 

BMH's performance, the parameter 𝐷𝑖𝑠𝑡 should be calculated as presented in Equation (14).  

𝐷𝑖𝑠𝑡 = |𝑊𝑠 −𝑊1|(2𝑞6 − 1)                    (14) 
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The young male gazelles are represented by the third behavior, BMH, which is defined by Equation 

(15). BMH is used to stretch out the search space for proper exploration of an algorithm. 

𝐵𝑀𝐻 = 𝑊𝑠 − 𝐷𝑖𝑠𝑡 + (𝑞𝑗5.𝑊1 − 𝑞𝑗6. 𝐵𝐻). 𝐶𝑜𝑓𝑞      (15) 

 

Finally, Equation (16) is used to develop MSF. This algorithm has a mechanism of random search.  

𝑀𝑆𝐹 = (𝑘𝑎 − 𝑣𝑎). 𝑞7 + 𝑘𝑎              (16)  

 

Where, 𝑘𝑎 and 𝑣𝑎 denote the parameter space's lower and upper bounds, respectively.  

 

 

Results and Discussion 

 

The proposed technique has been implemented using Python (v3.10) on Windows 11 OS. A great 

capacity for executing ML algorithms is delivered by the system's high-performance IRIS graphics 

card and Intel Core i7 processor. Here, the proposed Mountain Gazelle optimizer-driven Malleable 

Random Forest (MG-MRF) is compared with existing methods, such as Transformer model + K-

means clustering (TM+KMC), LSTM, and K-means (Zhang et al., 2021) using metrics like 

precision (%), accuracy (%), f1-score (%), and recall (%).  

 

Figure 2 demonstrates the power consumption of household appliances, highlighting that 

the AC has consumed almost 80%, while the fan exhibits the lowest at 30%. Other appliances, 

including TV, washing machine, lights, and fridge, has consumed 70%, 50%, 40%, and 60%, 

respectively. 

 
Figure 2. Power consumption output of the appliances 

 

1. Accuracy 

The quantity of accurate predictions made over the total number of instances defines 

accuracy. This provides information on the overall effectiveness of the model constructed for 

predicting household electricity consumption. The output of accuracy is depicted in Figure 3 and 

Table 1. The outcome demonstrates that the proposed MG-MRF (98.2%) approach outperforms 

the existing methods, such as TM+KMC (97%), LSTM (97%), and K-means (96%). 
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Figure 3. Accuracy 

 

2. Precision 

The metric measures the ratio of the true positives among all positive predictions made. In 

other words, this metric indicates how accurately the model aligns with actual power consumption 

instances and the rate of false positives. Figure 4 and Table 1 illustrate the output of precision. The 

result shows that the suggested MG-MRF (94%) method performs superior than existing methods, 

such as TM+KMC (80%), LSTM (74%), and K-means (82%). 

 

 
Figure 4. Precision 

 

3. Recall 

The metric measures true positive predictions in proportion with the overall positive 

situation. This is calculated so that every relevant instance of household electricity consumption 

can be detected correctly. The recall output is given by Figure 5 and Table 1. The outcome 

demonstrates that the suggested MG-MRF (90%) technique performs well than the existing 

methods, such as TM+KMC (66%), LSTM (60%), and K-means (28%). 

 

 
Figure 5. Precision 
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4. F1-Score 

This combines both precision and recall into one metric by balancing them together. This 

is a very vital measure in determining the goodness of fit for the model in estimating the electricity 

consumption levels for the household. Figure 6 and Table 1 present the result of f1-score. The 

outcome depicts that the proposed MG-MRF (92%) framework outperforms the existing 

approaches, such as TM+KMC (72%), LSTM (66%), and K-means (42%). 

 

 
Figure 6. F1-Score 

 

Table 1. Comparison of metrics  

Methods Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

K-means (Zhang et al., 

2021) 

96 82 28 42 

LSTM (Zhang et al., 2021) 97 74 60 66 

TM+KMC (Zhang et al., 

2021) 

97 80 66 72 

MG-MRF [Proposed] 98.2 94 90 92 
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