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A two-qubit system in quantum information theory is the simplest bipartite quantum system and its concurrence
for pure and mixed states is well known. As a subset of two-qubit systems, Bell-diagonal states can be depicted
by a very simple geometrical representation of a tetrahedron with sides of length 2

√
2. Based on this geometric

representation, we propose a simple approach to randomly generate four mixed Bell decomposable states in which
the sum of their concurrence is equal to one.

PACS: 03.67.Mn DOI:10.1088/0256-307X/29/1/010305

It is well known that quantum entanglement
is an important resource in quantum information
processing.[1] It describes the phenomena of nonclassi-
cal correlations between two (or more) parts of a quan-
tum system. A state of a composite quantum system
factored into two subsystems can be described by a
density matrix 𝜌 in a Hilbert-Schmidt space 𝐻⊗𝐻 and
it is called entanglement if it cannot be represented as
a tensor product of states of its subsystems.[2] On the
other hand, it will describe a separable state if it can
be expressed mathematically as a statistical mixture
of product states,

𝜌 =
∑︁
𝑖

𝑝𝑖𝜌
𝐴
𝑖 ⊗ 𝜌𝐵𝑖 , (1)

where 𝑝𝑖’s is a positive real number with
∑︀

𝑖 𝑝𝑖 = 1;
𝜌𝐴𝑖 and 𝜌𝐵𝑖 are density matrices of subsystem 𝐴 and
𝐵, respectively. In the case of pure states of such a
bipartite system, it is easy to check if a given state
is entangled or separable, but in the case of mixed
states the situation is more complicated. For a two-
qubit system, a necessary criterion for separability is
that the partial transpose 𝜌𝑇𝐵 of the density matrix
𝜌 is again a density matrix.[3] This criterion has also
been shown to be sufficient for the separability of a
two-qubit system.[4]

Fifteen parameters are required to fully describe
the density matrix of a 2 × 2 system. However, Bell-
diagonal states require only three and can be de-
picted by a simple three-dimensional geometrical pic-
ture called the Horodecki diagram.[5] This diagram
represents the Bell-basis states as the vertices of a
tetrahedron in which all other Bell-diagonal states

lie. The tetrahedron can be further subdivided into
five regions, namely, a central octahedron represent-
ing the separable states and four similar tetrads rep-
resenting nonseparable states. Due to its ease of
visualization and clear boundary between separable
and non-separable states, the Horodecki diagram has
been widely researched (e.g. Refs. [6,7]) and exploited
in quantum information research (e.g. Refs. [8–10]).
Practical applications of such Bell-diagonal states in
the diagram can be found in quantum cryptography
(e.g. Ref. [11]).

One of the fundamental aspects studied in
quantum information theory is to quantify the
amount of entanglement of a state and various mea-
sures have been proposed such as entanglement of
formation,[12−14] relative entropy of entanglement,[15]

negativity,[16,17] and so on. More recently, the idea
of quantum discord was also introduced[18] to further
study nonclassical correlations and comparison stud-
ies have been made.[19] Entanglement of formation is
a monotonic function of Wootters concurrence,[13,14]

which is the focus of this Letter. The maximum of the
latter corresponds to the maximum of the former and
thus for two-qubit systems, to compute entanglement
of formation is equivalent to computing concurrence.
For Bell-diagonal states, it has been shown[20] that its
concurrence is related to the Euclidean distance be-
tween the point representing the state and the set of
separable states in the Horodecki diagram.

Our aim is to exploit the simplicity of Horodecki
diagram to provide a geometrical approach to gener-
ating four mixed Bell-diagonal states with the nice
feature of its concurrences sum being to one. The
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rational of the approach arises from the simple trans-
formation of four small tetrahedra that represent the
mixed entangled states in the Horodecki diagram.

Arbitrary two spin-1/2 particles can be completely
described by the following 4× 4 density matrix:[5]

𝜌 =
1

4
(𝐼 ⊗ 𝐼 + 𝑟 · 𝜎 ⊗ 𝐼 + 𝐼 ⊗ 𝑠 · 𝜎

+

3∑︁
𝑚,𝑛=1

𝑡𝑛𝑚𝜎𝑛 ⊗ 𝜎𝑚), (2)

with 𝐼 and 𝜎 standing for identity and Pauli matri-
ces. For the subsystem 𝐴 and 𝐵, one can obtain two
reduced density matrices

𝜌𝐴 = 𝑡𝑟𝐵(𝜌𝐴𝐵) =
1

2
(𝐼 + 𝑟 · 𝜎),

𝜌𝐵 = 𝑡𝑟𝐴(𝜌𝐴𝐵) =
1

2
(𝐼 + 𝑠 · 𝜎), (3)

where 𝑟 and 𝑠 are Bloch vectors for particles 𝐴 and
𝐵, respectively. The 𝑇 matrix describes the corre-
lations between the particles and is given as 𝑡𝑛𝑚 =
𝑇𝑟(𝜌𝜎𝑛 ⊗ 𝜎𝑚).

Aravind[7] has shown that by using the twirl opera-
tion introduced by Bennett et al.,[12] an arbitrary two-
state mixture can be transformed such that 𝑟 = 𝑠 = 0
and only 𝑡𝑚𝑛 is non-vanishing, by executing four ele-
ments of the finite group of rotation in three dimen-
sions, 𝐷2 bilaterally on both particles.

The states with 𝑟 = 𝑠 = 0 are also called 𝑇 states
by Horodecki et al.,[5] with the density matrix

𝜌 =
1

4

⎛⎜⎜⎝
1 + 𝑟𝑧 0 0 𝑟𝑥 − 𝑟𝑦

0 1− 𝑟𝑧 𝑟𝑥 + 𝑟𝑦 0
0 𝑟𝑥 + 𝑟𝑦 1− 𝑟𝑧 0

𝑟𝑥 − 𝑟𝑦 0 0 1 + 𝑟𝑧

⎞⎟⎟⎠ , (4)

and the 𝑇 matrix becomes diagonal with 𝑟𝑥, 𝑟𝑦 and
𝑟𝑧 as elements. Straightforward calculation gives the
eigenvalues of 𝜌 as

𝜆1 =
1

4
(1− 𝑟𝑥 − 𝑟𝑦 − 𝑟𝑧),

𝜆2 =
1

4
(1− 𝑟𝑥 + 𝑟𝑦 + 𝑟𝑧),

𝜆3 =
1

4
(1 + 𝑟𝑥 − 𝑟𝑦 + 𝑟𝑧),

𝜆4 =
1

4
(1 + 𝑟𝑥 + 𝑟𝑦 − 𝑟𝑧). (5)

When 𝑟𝑥 = 𝑟𝑦 = 𝑟𝑧 = −1, it gives 𝜆1 = 1 and
𝜆2 = 𝜆3 = 𝜆4 = 0, and the 𝜌 gives rise density ma-
trix for Bell state Ψ−. Similarly, 𝑟𝑦 = 𝑟𝑧 = 1 = −𝑟𝑥,
𝑟𝑥 = 𝑟𝑧 = 1 = −𝑟𝑦 and 𝑟𝑥 = 𝑟𝑦 = 1 = −𝑟𝑧 cor-
responding to Bell states Φ−, Φ+ and Ψ+, respec-
tively. For other values of 𝑟𝑥, 𝑟𝑦 and 𝑟𝑧, 𝜌 results
density matrices of mixture of Bell states. Thus 𝜌

is parameterized by the diagonal elements of 𝑇 ma-
trix and can be represented by 3 dimensional vec-
tor (𝑟𝑥, 𝑟𝑦, 𝑟𝑧). The space spanned by these vectors
is called 𝑇 -space.[5] The four Bell states vectors de-
picted as points in 𝑇 -space form vertices of a regular
tetrahedron with length 2

√
2 and they are labeled as

𝐴, 𝐵, 𝐶 and 𝐷, respectively. All the other points
in the tetrahedron or on the surfaces represent mix-
ture states while the origin represents the completely
random state 𝐼/4. We will call the tetrahedron that
represents the Bell-diagonal states as physical tetra-
hedron and denote it as 𝑃𝑇 .

According to Peres–Horodecki’s criterion,[3,4] a 2×
2 quantum state is separable if and only if the partially
transposed matrix is again a density matrix. Applying
partial transposition to 𝜌 gives

𝜌𝑇𝐵 =
1

4

⎛⎜⎜⎝
1 + 𝑟𝑧 0 0 𝑟𝑥 + 𝑟𝑦

0 1− 𝑟𝑧 𝑟𝑥 − 𝑟𝑦 0
0 𝑟𝑥 − 𝑟𝑦 1− 𝑟𝑧 0

𝑟𝑥 + 𝑟𝑦 0 0 1 + 𝑟𝑧

⎞⎟⎟⎠ .

(6)
By calculating the eigenvalues of 𝜌𝑇𝐵 and follow-

ing the analysis outlined above, we will obtain an-
other regular tetrahedron with the vertices 𝑟𝐴 =
(−1, 1,−1), 𝑟𝐵 = (−1,−1, 1), 𝑟𝐶 = (1, 1, 1) and
𝑟𝐷 = (1,−1,−1). The partial transpose executed in
the Peres-Horodecki criterion reflects the 𝑃𝑇 in the
𝑥–𝑧 plane, thus 𝑟𝐴 can be obtained from 𝐴 by mul-
tiplying 𝑟𝑦 of 𝐴 by −1, and so on. We thus label the
latter tetrahedron as 𝑟𝑡 (reflected tetrahedron).

The portion of the 𝑟𝑡 that lies outside of 𝑃𝑇 does
not represent any physical states. To find the intersec-
tion sector of 𝑃𝑇 and 𝑟𝑡 we calculate the points of the
intersection between any two planes of 𝑃𝑇 and each
plane of 𝑟𝑡. The results we obtained are 𝑎 = (1, 0, 0),
𝑏 = (−1, 0, 0), 𝑐 = (0, 1, 0), 𝑑 = (0,−1, 0), 𝑒 = (0, 0, 1)
and 𝑓 = (0, 0,−1) which are vertices of a octahedron.
As the octahedron are produced from taking partial
transposition, and all the states in it must have posi-
tive eigenvalues due to the Peres–Horodecki criterion,
the octahedron thus represents all the separable Bell-
diagonal states.

The geometrical object constructed above can be
drawn into what is known as Horodecki diagram.[5]

Readers can refer to Refs. [7,9,10] for its illustration.
Planes 𝑎𝑐𝑒, 𝑎𝑑𝑓 , 𝑏𝑐𝑓 and 𝑏𝑑𝑒 of the octahedron are

the same as planes 𝐵𝐶𝐷, 𝐴𝐶𝐷, 𝐴𝐵𝐷 and 𝐴𝐵𝐶 of
𝑃𝑇 . The remaining four planes of the octahedron, i.e.
𝑏𝑑𝑓 , 𝑏𝑐𝑒, 𝑎𝑑𝑒 and 𝑎𝑐𝑓 together with four vertices of
𝑃𝑇 , i.e. 𝐴, 𝐵, 𝐶, 𝐷 form four small regular tetrahe-
dra and we label them as 𝑝𝑡𝐴, 𝑝𝑡𝐵, 𝑝𝑡𝐶 and 𝑝𝑡𝐷, re-
spectively. For 𝑝𝑡𝐴, the base is 𝑏𝑑𝑓 , and the apex is 𝐴,
and similarly for the other small tetrahedra. Figure 4
in Ref. [9] shows clearly some of the small tetrahedra.
Therefore 𝑃𝑇 is divided into five sectors with octa-
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hedron representing separable states, and four small
tetrahedra representing entangled mixed states, ex-
cept for the apexes representing pure Bell states.

The side length and the height of the four small
regular tetrahedra are

√
2 and 2/

√
3, respectively.

The centroids of 𝑝𝑡𝐴, 𝑝𝑡𝐵, 𝑝𝑡𝐶 and 𝑝𝑡𝐷 are 𝑐𝐼 =
(− 1

2 ,−
1
2 ,−

1
2 ), 𝑐𝐼𝐼 = (− 1

2 ,
1
2 ,

1
2 ), 𝑐𝐼𝐼𝐼 = ( 12 ,−

1
2 ,

1
2 ),

and 𝑐𝐼𝑉 = ( 12 ,
1
2 ,−

1
2 ), respectively.

The centroids of 𝑝𝑡 can be easily transformed to the
centroid of 𝑃𝑇 , i.e. origin of the coordinated system
for 𝑇 -space. For example, adding 1

2 to each element
moves 𝑐𝐼 to (0, 0, 0). The transformations translate
the apexes of 𝑝𝑡 to their own centroids, and the four
bases of 𝑝𝑡 meet to form a regular tetrahedron (again
side length

√
2) with the origin as the centroid and 𝑐𝐼–

𝑐𝐼𝑉 as vertices, see Fig. 1. We call this tetrahedron a
generator tetrahedron 𝑔𝑡.

Now, by picking any point (𝑥, 𝑦, 𝑧) located inside
or on the surfaces of 𝑔𝑡, and transform it to 𝑝𝑡 via

𝑝𝑡𝐴 : 𝑟𝑥 → 𝑥− 1

2
, 𝑟𝑦 → 𝑦 − 1

2
, 𝑟𝑧 → 𝑧 − 1

2
,

𝑝𝑡𝐵 : 𝑟𝑥 → 𝑥− 1

2
, 𝑟𝑦 → 𝑦 +

1

2
, 𝑟𝑧 → 𝑧 +

1

2
,

𝑝𝑡𝐶 : 𝑟𝑥 → 𝑥+
1

2
, 𝑟𝑦 → 𝑦 − 1

2
, 𝑟𝑧 → 𝑧 +

1

2
,

𝑝𝑡𝐷 : 𝑟𝑥 → 𝑥+
1

2
, 𝑟𝑦 → 𝑦 +

1

2
, 𝑟𝑧 → 𝑧 − 1

2
,

(7)

we can generate four points that are located in 𝑝𝑡.
By substituting (𝑟𝑥, 𝑟𝑦, 𝑟𝑧) into Eq. (4), four mixed
Bell-diagonal states will be generated. The generated
mixed states have the nice property of its sum of con-
currence being equal to 1 (see the following).

One way to characterize entanglement is to calcu-
late the concurrence. For a mixed state of two-qubit
system, concurrence can be expressed as[13,14]

𝐶(𝜌) = max{
√
𝑟1 −

√
𝑟2 −

√
𝑟3 −

√
𝑟4, 0}, (8)

where 𝑟1 ≥ 𝑟2 ≥ 𝑟3 ≥ 𝑟4 are the eigenvalues of the
operator

𝑅 = 𝜌(𝜎𝑦 ⊗ 𝜎𝑦)𝜌
*(𝜎𝑦 ⊗ 𝜎𝑦), (9)

with the asterisk denoting the complex conjugation in
the computational basis.

For Bell-diagonal state, 𝑅 = 𝜌2 and square roots
of its eigenvalues are the same as the eigenvalues of 𝜌
given in Eq. (5). Since the maximum values of 𝜆’s of
a state depend on which 𝑝𝑡 of the state is represented,
we can rewrite the concurrence as

𝐶(𝜌) = max{2𝜆max −
4∑︁

𝑖=1

𝜆𝑖, 0}, (10)

where
𝜆max = max{𝜆1, 𝜆2, 𝜆3, 𝜆4}. (11)

For 𝑝𝑡𝐵, 𝑟𝑥 < 0, 𝑟𝑦 > 0 and 𝑟𝑧 > 0, so by inspection
of Eq. (5) we know that 𝜆2 = 𝜆max, so

𝐶(𝜌𝐵) = 2𝜆2 − 1 =
1

2
(−1− 𝑟𝑥 + 𝑟𝑦 + 𝑟𝑧), (12)

where we have used
4∑︁

𝑖=1

𝜆𝑖 = 1. Similar argument

gives

𝐶(𝜌𝐴) =
1

2
(−1− 𝑟𝑥 − 𝑟𝑦 − 𝑟𝑧),

𝐶(𝜌𝐶) =
1

2
(−1 + 𝑟𝑥 − 𝑟𝑦 + 𝑟𝑧),

𝐶(𝜌𝐷) =
1

2
(−1 + 𝑟𝑥 + 𝑟𝑦 − 𝑟𝑧). (13)

Now let us pick a point (𝑥, 𝑦, 𝑧) from 𝑔𝑡 at random,
inverse transform it as shown in Eq. (7), and substi-
tute the obtained coordinates (𝑟𝑥, 𝑟𝑦, 𝑟𝑧) into the re-
spective concurrence expressions of Eqs. (12) and (13);
their sum gives

𝐶(𝜌𝐴) + 𝐶(𝜌𝐵) + 𝐶(𝜌𝐶) + 𝐶(𝜌𝐷) = 1. (14)

We can also prove Eq. (14) via the relationship
between concurrence and the Euclidean distance be-
tween the points representing mixed states and the
set of separable states. The equations of planes for
the base of 𝑝𝑡𝐴, 𝑝𝑡𝐵, 𝑝𝑡𝐶, and 𝑝𝑡𝐷 are

𝑥+ 𝑦 + 𝑧 + 1 = 0,

𝑥− 𝑦 − 𝑧 + 1 = 0,

− 𝑥+ 𝑦 − 𝑧 + 1 = 0,

− 𝑥− 𝑦 + 𝑧 + 1 = 0. (15)

The perpendicular distances from arbitrary point
(𝑟𝑥, 𝑟𝑦, 𝑟𝑧) in 𝑝𝑡 to the respective bases are then

𝑑𝐴 =
1√
3
(𝑟𝑥 + 𝑟𝑦 + 𝑟𝑧 + 1),

𝑑𝐵 =
1√
3
(𝑟𝑥 − 𝑟𝑦 − 𝑟𝑧 + 1),

𝑑𝐶 =
1√
3
(−𝑟𝑥 + 𝑟𝑦 − 𝑟𝑧 + 1),

𝑑𝐷 =
1√
3
(−𝑟𝑥 − 𝑟𝑦 + 𝑟𝑧 + 1). (16)

Comparing the magnitude of Eq. (16) with Eqs. (12)
and (13), we can deduce that

𝐶(𝜌) =

√
3

2
𝑑. (17)

By substituting (𝑟𝑥, 𝑟𝑦, 𝑟𝑧) in terms of (𝑥, 𝑦, 𝑧) picked
from 𝑔𝑡 into Eq. (16) and taking the summation, we
obtain ∑︁

𝑑 =
2√
3
, (18)

which is the height of 𝑝𝑡. Thus
∑︀

𝐶(𝜌) = 1.
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Figure 1 shows the vertices of 𝑔𝑡 formed by trans-
forming the vertices of 𝑝𝑡 via the inverse translations
given in Eq. (7). Vertices of 𝑝𝑡𝐴, which are denoted as
the first letter in the four brackets, will be transformed
to the vertices of 𝑔𝑡. The base of 𝑝𝑡𝐴, namely 𝑏𝑑𝑓 , thus
forms the surface (𝑐𝐼𝐼, 𝑐𝐼𝐼𝐼, 𝑐𝐼𝑉 ) of 𝑔𝑡. By using Fig. 1,
the third alternative of explaining why the unit sum
of concurrence for the four generated mixed states is
as follows. Measuring the distance between arbitrary
point (𝑥, 𝑦, 𝑧) (represented as a dot in Fig. 1) in 𝑔𝑡 to
its surfaces is equivalent to measuring the distance be-
tween the transformed (via Eq. (7)) point (𝑟𝑥, 𝑟𝑦, 𝑟𝑧)
to the respective bases of 𝑝𝑡. In Fig. 1, it is clear that
the length of blue line 𝑖𝑣 is the Euclidean distance
between the point (𝑥, 𝑦, 𝑧) and the surface (𝑐𝐼𝐼, 𝑐𝐼𝐼𝐼,
𝑐𝐼𝑉 ) of 𝑔𝑡, and it is also the Euclidean distance be-
tween the point (𝑟𝑥, 𝑟𝑦, 𝑟𝑧) and the base 𝑏𝑑𝑓 of 𝑝𝑡𝐴.
The sum of the distance for point (𝑥, 𝑦, 𝑧) to the sur-
faces of 𝑔𝑡, given by the sum of lengths of lines 𝑖-𝑖𝑣 in
Fig. 1, is always equal to the height of 𝑔𝑡, which is 2√

3
,

thus the sum of distance between (𝑟𝑥, 𝑟𝑦, 𝑟𝑧) to the
respective bases of 𝑝𝑡 must always be the same as the
height of 𝑝𝑡, because the transformation (7) will pre-
serve the length of lines 𝑖–𝑖𝑣. Again, due to Eq. (17),
it guarantees that

∑︀
𝐶(𝜌) = 1.

cIII ↼d֒ e֒ C֒ a↽

iv

iii

cII ↼b֒ B֒ e֒ c↽

cI ↼A֒ b֒ d֒ f↽
cIV ↼f֒ c֒ a֒ D↽

ii
i

Fig. 1. Diagram showing the relationship between the
surfaces of 𝑔𝑡 and the bases of 𝑝𝑡. The first, second, third
and fourth letters in each bracket denote the vertices of
𝑝𝑡𝐴, 𝑝𝑡𝐵, 𝑝𝑡𝐶 and 𝑝𝑡𝐷, respectively. After being trans-
formed through the inverse of translations (7), the bases
of 𝑝𝑡 form the surfaces of 𝑔𝑡. As one of the cases, via the
inverse of translation given by the first equation of (7),
𝐴 transformed to 𝑐𝐼, 𝑏 transformed to 𝑐𝐼𝐼, 𝑑 transformed
to 𝑐𝐼𝐼𝐼 and 𝑓 transformed to 𝑐𝐼𝑉 , it means that the base
𝑏𝑑𝑓 of 𝑝𝑡𝐴 is transformed to surface (𝑐𝐼𝐼, 𝑐𝐼𝐼𝐼, 𝑐𝐼𝑉 ) of 𝑔𝑡.
The length of line 𝑖𝑣 in the diagram shows the Euclidean
distance from the arbitrary point (𝑥, 𝑦, 𝑧) in 𝑔𝑡 to the base
(𝑐𝐼𝐼, 𝑐𝐼𝐼𝐼, 𝑐𝐼𝑉 ) and also the Euclidean distance from the
transformed point (𝑟𝑥, 𝑟𝑦 , 𝑟𝑧) in 𝑝𝑡𝐴 to the base 𝑏𝑑𝑓 . The
meaning of lines 𝑖, 𝑖𝑖 and 𝑖𝑖𝑖 can be interpreted in a similar
way.

In summary, based on the geometrical properties
of the Horodecki diagram representing Bell-diagonal
states, we have constructed a simple approach to gen-
erating four mixed states with its sum of concurrence
equal to 1. The unity summation is proved by using
the direct calculation of concurrence and can be ex-
plained via the relationship between concurrence and
the Euclidean distance between entangled states and
the set of separable states. The transformations of
bases of the four small tetrahedra to form surfaces of
the generator tetrahedron also provide a geometrical
picture of why the sum of concurrence is equal to 1.

It is interesting to note that most recently,[21]

Ramsak showed that the concurrence can be expressed
as the expectation values of trigonometric functions of
the azimuthal angle between the two angular momenta
of the entangled qubits. This will lay the foundations
of the unit sum of concurrence discussed in the present
study.
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