A Framework for Formulation of Student Dataset Using Existing and Novel Features for Analysis

Esther Samuel Alu^{1*}, Rashida Funke Olanrewaju¹, Afolyan A. Obiniyi^{2,} Muhammad Dahiru Liman³

¹Department of Computer Science, Nasarawa State University Keffi, Nigeria
²Department of Computer Science, Ahmadu Bello University Zaria, Nigeria
³Department of Computer Science, Federal University of Lafia, Nigeria

*Email: estheralu@nsuk.edu.ng,

Abstract

One major problem identified with most schools in Nigeria is that they lack structured educational datasets that is composed of several attributes related to each student, such as term-based grades, courses taken, student-specific details, and absences which could be easily analysed. This paper formulates a dataset with some novel features for analysing and predicting student performance. Apart from the current features like age, grade, number of failures etc. some novel features which consists of environmental factors were proposed. Students' records were collected from schools and surveys on schools' infrastructure were collected using a questionnaire. The data were analysed using NumPy and Pandas in python. Random forest was used as classifier for making prediction and detecting important features. The following features were found to influence the model decision in making decision; Average, Number of failures, students score in all the subjects, school type, portable drinking water, availability of electricity, textbook to student ratio, and availability of laboratory reagents. Four of the proposed features were among the most important features. In addition, the model was excellent in making prediction. Results of the analysis shows that there are more male than females in the dataset, this means that government, non-governmental organization and the society needs to promote and encourage girl child education.

Keywords

Student, Dataset, Feature Importance, Random Forest.

Introduction

Education is the bedrock of any society, it provides a foundation for development; therefore, this foundation must be properly built so that it can provide the desired development. The decline in performance of students in public schools raises concern considering Government spending over the last three decades in the sector (Omotor, 2004 & Onuma, 2016). This has left most government schools deserted as most parents have taken their children out of public schools to private schools

Submission: 2 June 2023; Acceptance: 7 August 2023

Copyright: © 2023. All the authors listed in this paper. The distribution, reproduction, and any other usage of the content of this paper is permitted, with credit given to all the author(s) and copyright owner(s) in accordance to common academic practice. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, as stated in the website: <u>https://creativecommons.org/licenses/by/4.0/</u>

(Dixon *et al.*, 2017 & Ukpor *et al.*, 2012). Stakeholders have found themselves in the undesirable position of not being able to identify the cause of the decline in students' performance. According to West Africa Examination Council (WAEC) statistics, fewer students are registering for public schools. Private schools have a larger enrollment of students than public schools. Private schools saw a 56% increase in enrollment while public schools saw a 44% fall (Uduu, 2022). According to WAEC, private school performance increased from 54% in 2016 to 71% in 2019 among students with more than five credits. The increase in student enrollment in private schools may be responsible for this improvement.

This work focuses on the senior secondary school level of education in Nigeria, and how poor student record keeping and maintenance has hurt the quality of secondary education in Nigeria. It is this gap that this research aim to fill by formulating a dataset with relevant student features that will be used by policy makers to make decisions. It will also help school administrators to identify students who had the highest probability of failing at the end of the year. Features that influence the model decision can be the focal point of policy makers, and school administrators in tackling student failure.

Materials and Methods

Materials

The proposed dataset consists of existing and novel features.

Existing features from Literatures

The existing features used in previous related works are presented in table 1.

Table 1. Peatures used in previous work for p					
Features	Paper				
GPA and Grades	(Huang <i>et al.</i> , 2011)				
Grades	(Livieris et al., 2012; Li et al, 2013;				
	Arsad et al., 2013; Meier et al, 2015;				
	Arsad et al., 2014; Buniyamin et al,				
	2016).				
Grades, Backgrounds	Xu et al, 2017				
Class Performance, Attendance, Assignment, Lab	Guleria et al, 2014				
Work, Sessional Performance					
Aptitude, Personality, Motivation Learning strategies	Gray et al, 2014				
student demographics, general performance, students'	Alharbi et al, 2016				
modules					
Internal grades, sessional grades and admission score	Hamsa et al, 2016				
Personal and demographics information, student	Sarker et al, 2014				
satisfaction and integration					
Personal data, pre-university data, and university data.	Dorina 2012				
Gender, marital status, admission category, family	Aggarwal et al. (2019)				
income and size, parents' qualification and					

Table 1. Features used in previous work for predicting student performance

occupation, number of friends, study hours, types of	
school attended. and travel time to college and home	
Department satisfaction, course attendance, preferred	Kayri (2015)
study time, planning, and friends' contributions.	
Gender, family background, distance, GPA, entrance	Osmanbegovic and Suljic (2012)
exam, scholarships, time, materials, internet.	

Existing features used in this research

The features of the proposed dataset have two components namely; features from current/existing features and the novel/new features.

The features from existing literature used in this work are; scores of different subjects (performance of student in relevant subject like Mathematics, English, Physics, Chemistry, Biology, Agriculture, Financial Accounting, Literature, Commerce, Civic Education, Economics, and Geography), Number of times student has failed, course type, school name, gender, number of terms, student average scores, and grade.

Apart from the current features some novel/new features were proposed. These features are school infrastructures and/or school facilities namely; teacher to student ratio, availability of laboratory reagent, availability of laboratory equipment, availability of textbooks in the library, textbook to student ratio, availability of visual equipment, number of students per seat, the type of board used in school, availability of electricity, and availability of portable drinking water.

Method of Data Collection

The method of data collection used is the primary and secondary methods. The primary method is the questionnaire given to schools to obtain data about the school's facilities and infrastructures. The secondary method is the students' academic records obtained from the various schools.

Population, and Sample

Nasarawa state has 13 local government areas with 297 public or government schools and 298 private schools.

Method

Part of the contribution of this paper is to derive insights from the proposed dataset. To derive insights there is need to clean the data. One of the insights is to know the features that are important. To determine the features that are important there is a need for a model to be developed that will detect these important features.

Data Cleaning

This stage involves cleaning of the dataset, converting categorical data to numerical variables and normalizing the data. Categorical variables were converted to numerical variables, this is because the model expects numbers. The type of encoding use is one hot encoding. The AVG column is derive by getting the average scores of the nine subjects. The N_fail is derived by counting the number of subjects a student has failed.

Algorithm

Random forest classifier was used to detect features that were important. The following steps were followed to create and train the model. Load dataset, data preparation, visualize data, Model creation, train model, test model, and evaluate model. The steps are shown in figure 1.

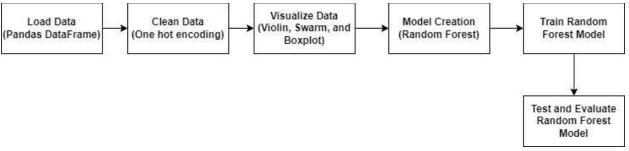


Figure 1. Model flow diagram.

The dataset was loaded into Pandas data frame for easy analysis. The data was prepared by cleaning the data as previously explained in the data cleaning stage. The data was visualized to know the distribution of the classes as shown in figure 2. The models were created using Scikit-learn. The model created is Random Forest Classifier. The model was trained using training data. The training data is 72% of the whole data. 8% of the data was used for validation. The model was tested using test data. The test data was 20% of the whole data. The model was evaluated using accuracy, precision, recall, and confusion matrix.

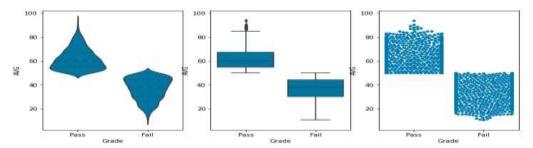


Figure 2. Violin plot, Boxplot, and swarm plot showing the distribution of the two classes.

Results and Discussion

The formulated dataset and the insights derive from the dataset are presented here.

Formulation of Student Dataset

The formulated dataset consists of 28 features from current literatures and proposed novel features. The students' dataset has a total of 3543 records from both private and public schools. The dataset had two categories (Fail and Pass). Figure 3 shows a sample of the formulated dataset.

NAMES	School_Name	MTH	ENG	BIO	GED	AGRIC	ECO	CIVIC	PHY_GOVT_COMM	-	Laboratory_equipments
02. CHUE DESMOND	Anty Dele College	41.666667	55 000000	45 000057	74.000000	67.000000	94.000057	60.000000	37 333333	-	Glaed
83. JOSEPH SUNDAY	Anty Dele College	35,066667	42.000000	32.000000	68.666667	59.000000	44.655557	58 566667	42.669567		Good
04. FRANCIS EPHRAIM	Anty Dele College	74,333333	74.666667	79.000000	91.656667	83 666657	81.000000	74.000000	88.000000		Good
05. ISHAYA EMMANUEL	Anty Dele College	40.000000	67.000000	55 000000	73,333333	69.886667	73.000000	71.666667	59.000000	-	Good
66 AKOR ENMANUEL	Anty Dele College	58.333333									Gaed
	02. CHUE DESMOND 03. JOSEPH SUNDAY 04 FRANCIS EPHRAM 05. ISHAYA EMMANUEL 06. AKOR	02. CHLIE Arty Dele DESMOND College 03. JUNDAY Arty Dele SUNDAY Arty Dele FIRANCIS College 05. SI-MAYA College EMMANUEL College	02. CHUE Anty Dele At 866667 DESMOND Anty Dele At 866667 03. JOSEFH Anty Dele 35 666607 04. Atty Dele 74.333333 PRANCHS College 74.333333 DS ISHAWA Anty Dele 74.333333 OS ISHAWA College 40.00000 SS ANOR Anty Dele 90.333333	02. CHLIE DESMOND Anty Dele College a1 666667 56 080000 03. JOSEFH SUNDAY Anty Dele College 35 066667 42 00000 04. FIRANCIS Anty Dele College 74 333333 74 966667 05. ISHANCIS Anty Dele College 40 000000 67 000000 05. ISHANCIS Anty Dele College 40 000000 67 000000 66. AKCR EMMANUEL Anty Dele College 59 333333 73 000000	02. CHUE DESMOND Antr Dele College 41 86667 56 00000 46 86867 03. JOSEFH SUNDAY Antr Dele College 35 000607 42 00000 32 00000 04. FRANCIS EPHRAMUE Antr Dele College 74 33333 74 86667 79 00000 05. ISHWA EMMANUEL Antr Dele College 43 00000 67 00000 55 00000 96. ANCR EMMANUEL Antr Dele College 96 33333 73 00000 58 00000	02. CHUE DESMOND Antr Dele College a1.869667 56.00000 46.96667 74.00000 03. JOSEFH SUNDARY Antr Dele College 35.96667 42.00000 32.00000 68.66667 04. FIRANCIS Antr Dele College 74.33333 74.866967 79.00000 91.656657 05. ISHAYA EMMANUEL Antr Dele College 40.00000 67.00000 55.90000 73.33333 66.AKOR EMMANUEL Antr Dele College 54.33333 73.00000 58.00000 81.66667	02. CHUE DESMOND Antr Dele College 41.866667 56.00000 46.866657 74.00000 67.00000 03. JOSEFH SUNDAY Antr Dele College 35.00667 42.00000 32.00000 68.66667 59.00000 04. FRANCIS EPHRAMUE Antr Dele College 74.33333 74.866667 79.00000 91.656657 83.656667 05. ISHWA EMMANUEL Antr Dele College 49.00000 67.00000 55.050000 73.33333 69.666667 96.AKCR Actr Dele College 96.33333 73.00000 58.00000 81.656667 74.000000	02. CHUE DESMOND Anty Dele College #1.666667 56.00000 #6.66667 74.030000 67.00000 64.666667 03. JOSEFH SUNDAD Anty Dele College 35.66667 42.00000 32.00000 68.86667 59.00000 44.666667 04. FRANCIS EPHRAMUEL Anty Dele College 74.33333 74.86667 79.00000 81.96667 83.96667 73.00000 44.66667 05. ISHAVA EMMANUEL Anty Dele College 40.00000 67.00000 55.90000 73.33333 69.96667 73.00000 96. AMOR EMMANUEL Anty Dele College 59.33333 73.00000 56.90000 81.966667 74.00000 69.333333	02. CHUE DESMOND Antr Dele College a1 869667 56 00000 46 86667 74 00000 67 00000 64 666657 60 00000 03. JOSEFH SUNDAY Antr Dele College 35 066667 42 00000 32 00000 68 866667 59 00000 44 666657 56 66667 04. FIRANCIS EPHRAMI Antr Dele College 74 333333 74 866667 79 00000 91 656657 83 856657 81 000000 74 000000 05. ISHAWA EMMANUEL Antr Dele College 49,00000 67 000000 55 000000 73 33333 69 866667 73 000000 71 666667	02. CHUE DESMOND Anty Date College 41.666667 56.00000 46.666667 74.00000 67.00000 64.666667 60.00000 37.133333 03. JOSEFH SUNDARY Anty Date College 55.66667 42.60000 32.00000 68.66667 59.00000 44.656667 56.66667 42.66667 04. FRANCIS EPHRAMI Anty Date College 74.33333 74.66667 79.00000 91.655657 83.656667 71.00000 74.00000 88.00000 05. ISHAWA EMMANUEL Anty Date College 74.33333 74.65667 79.00000 91.655657 83.656657 73.00000 71.565667 50.00000 05. ISHAWA EMMANUEL Anty Date College 40.00000 67.00000 53.33333 69.66667 73.000000 71.566667 50.00000 05. ISHAWA EMMANUEL Anty Date College 40.30000 67.00000 73.33333 69.66667 73.000000 71.566667 71.331333	02 CHUE Anty Dele College 41 666667 56 000000 45 666667 74 030000 67 000000 64 666667 60 000000 37 133333

5 rows × 28 columns

Figure 3. Sample of the formulated student dataset.

The essence of creating this dataset is to make it public for researchers to carry out research and derive insights from the dataset. Some of the insights derived from the dataset are discussed in succession.

Insights 1: Is the dataset balance?

This dataset was not balanced, because it has 3543 students, with 2016 that Failed and 1527 Passed.

Insights 2: What is the gender count?

The gender count was determined by distributing the classes on a pie chart with result as follows; 1792 males and 1751 females, which means males are more in the dataset. This result shows that there is need for government to encourage girl child education for gender equality.

Insights 3: Are the proposed features important?

Features importance shows if the proposed novel features are important, whether they can be useful for making decision. Figure 2 shows a plot of the importance of each feature.

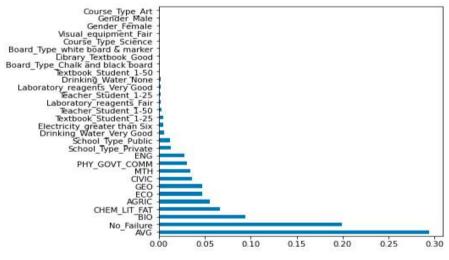


Figure 4. Feature importance.

Machine learning developers used feature importance to select features that will help their model in making decision. From the figure 4, the features that are important are ranked accordingly; starting with Average, number of failures, scores of all the subjects, school type, drinking water, electricity, textbook to student ratio, and laboratory reagent. Based on figure 4, the

following proposed features were proven to be important namely; availability of drinking water, availability of electricity, textbook to student ratio, and laboratory reagent.

Models Evaluation

The results of the model performance are presented in figures 5 and 6 based on the metrics. The random forest classifier achieved an accuracy of 1.0.

Random forest Classification Report								
	precision	recall	f1-score	support				
0	1.00	1.00	1.00	421				
1	1.00	1.00	1.00	288				
accuracy			1.00	709				
macro avg	1.00	1.00	1.00	709				
weighted avg	1.00	1.00	1.00	709				

Figure 5. Classification report for Random Forest.

```
Random Forest Confusion Matrix
```

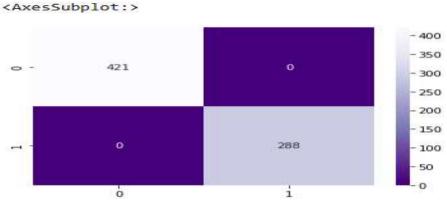


Figure 6. Confusion matrix for random forest.

Figure 6 shows there were 421 True positives, 0 False Negatives, 0 False Positives, and 288 True Negatives. The major focus is the False Negatives, because it means the model predicted these instances that Failed as passed, which would have been very unfortunate because the students will miss the necessary intervention intended for them.

Conclusion

The results show that the novel features proposed were really important and these features were not considered by the previous authors. From the preceding literature review, it is clear that fundamental data attributes which have significant impact on the performance of students were not considered by the authors. This is understandably so because the studies were conducted in different climes where each has its own peculiarities. In other climes, electricity is available for 24 hours, there is portal drinking water, laboratories are well equipped, there are no congestion in classes, there are textbook in libraries for students to study, and there are enough teachers to meet the required number of teachers to student ratio.

In Nigeria, there is problem of electricity, some places are not even connected to the national grid, most places don't have portal drinking water, laboratories are not well equipped due to underfunding of education sector, the textbooks in the libraries are not enough and some are outdated, some schools don't have enough teachers, and due to lack of enough schools in some places the classes are congested. These are the reasons why these attributes were considered. Important features presented by the model can be used by stakeholders to make informed decisions. The model used here is a classification model, the problem can also be addressed using a regression model.

Acknowledgements

Authors are thankful to Nasarawa State University Keffi.

References

- Aggarwal, D., Mittal, S., & Bali, V. (2019). Prediction model for classifying students based on performance using machine learning techniques. *International Journal of Recent Technology* and *Engineering*, 8(257), 496–503. https://doi.org/10.35940/ijrte.B1093.0782S719
- Alharbi, Z., Cornford, J., Dolder, L., & De La Iglesia, B. (2016). Using data mining techniques to predict students at risk of poor performance. In *Proceedings of the 2016 SAI Computing Conference (SAI 2016)* (pp. 523–531).
- Arsad, P. M., Buniyamin, N., & Manan, J. L. A. (2013). A neural network students' performance prediction model (NNSPPM). In 2013 IEEE International Conference on Smart Instrumentation, Measurement and Applications (ICSIMA 2013) (pp. 26–27).
- Buniyamin, N., Bin Mat, U., & Arshad, P. M. (2016). Educational data mining for prediction and classification of engineering students' achievement. In 2015 IEEE 7th International Conference on Engineering Education (ICEED 2015) (pp. 49–53).
- Dorina, K. (2012). Student performance prediction by using data mining classification algorithms. International Journal of Computer Science and Management Research, 1(4).
- Dixon, P., Humble, S., & Tooley, J. (2017). How school choice is framed by parental preferences and family characteristics: A study in poor areas of Lagos State, Nigeria. *Institute of Economic Affairs*, 53–65.
- Gray, G., McGuinness, C., & Owende, P. (2014). An application of classification models to predict learner progression in tertiary education. In *Proceedings of the 2014 IEEE International Advance Computing Conference (IACC)*.
- Guleria, P., Thakur, N., & Sood, M. (2015). Predicting student performance using decision tree classifiers and information gain. In *Proceedings of the 2014 3rd International Conference* on Parallel, Distributed and Grid Computing (PDGC 2014) (pp. 126–129).
- Hamsa, H., Indiradevi, S., & Kizhakkethottam, J. J. (2016). Student academic performance prediction model using decision tree and fuzzy genetic algorithm. *Procedia Technology*.

- Huang, S., & Fang, N. (2012). Work in progress: Early prediction of students' academic performance in an introductory engineering course through different mathematical modeling techniques. In *Proceedings of the Frontiers in Education Conference (FIE)* (Vol. 1, pp. 3–4).
- Kayri, M. (2015). An intelligent approach to educational data: Performance comparison of the multilayer perceptron and the radial basis function artificial neural network. *Educational Sciences: Theory & Practice, 15*(5), 1247–1255. https://doi.org/10.12738/estp.2015.5.0238
- Li, K. F., Rusk, D., & Song, F. (2013). Predicting student academic performance. In Proceedings of the 2013 7th International Conference on Complex, Intelligent, and Software Intensive Systems (CISIS 2013) (pp. 27–33).
- Livieris, I. E., Drakopoulou, K., & Pintelas, P. (2012). Predicting students' performance using artificial neural networks. In *Proceedings of the 8th Pan-Hellenic Conference on Information and Communication Technologies in Education* (pp. 28–30).
- Livieris, I. E., Drakopoulou, K., Tampakas, V., Mikropoulos, T., & Pintelas, P. (2019). Predicting secondary school students' performance using a semi-supervised learning approach. *Journal of Educational Computing Research*, 57(2), 448–470.
- Meier, Y., Xu, J., Atan, O., & Van Der Schaar, M. (2016). Predicting grades. *IEEE Transactions* on Signal Processing, 64(4), 959–972.
- Mohd Arsad, P., Buniyamin, N., & Ab Manan, J. L. (2014). Neural network and linear regression methods for prediction of students' academic achievement. In *IEEE Global Engineering Education Conference (EDUCON)* (pp. 916–921).
- Omotor, D. G. (2004). An analysis of federal government expenditure in the education sector of Nigeria: Implications for national development. *Journal of Social Sciences*, 9(2), 105–110.
- Onuma, N. (2016). Financial allocation to secondary education in Nigeria: Implication for students' performance. *IOSR Journal of Research & Method in Education*, 6(3), 42–47.
- Sarker, F., Tiropanis, T., & Davis, H. C. (2014). Linked data, data mining and external open data for better prediction of at-risk students. In *Proceedings of the International Conference on Control, Decision and Information Technologies (CoDIT).*
- Uduu, O. (2022). Public schools record a 73.81% success rate in 2021 WAEC, highest in 6 years. *Dataphyte*. <u>https://www.dataphyte.com/latest-reports/educationdevelopment/public-schools-record-a-73-81-success-rate-in-2021-waec-highest-in-6-years/</u>
- Ukpor, C. O., Ubi, I. O., & Okon, A. E. (2012). Assessment of factors determining parents' preference for private secondary schools in rural communities of Cross River State. *Global Journal of Educational Research*, *11*(2), 99–106.
- Xu, J., Moon, K. H., & Van Der Schaar, M. (2017). A machine learning approach for tracking and predicting student performance in degree programs. *IEEE Journal of Selected Topics in Signal Processing*, 11(5), 742–753.