THE APPLICATION OF UNMANNED AERIAL VEHICLES (UAV) IN ALLEVIATING TIME OVERRUN IN THE CONSTRUCTION INDUSTRY

THOO YUAN LENG

BACHELOR OF SCIENCE (HONS) IN QUANTITY SURVEYING

FACULTY OF ENGINEERING AND QUANTITY SURVEYING INTI INTERNATIONAL UNIVERSITY (2020)

THE APPLICATION OF UNMANNED AERIAL VEHICLES (UAV) IN ALLEVIATING TIME OVERRUN IN THE CONSTRUCTION INDUSTRY

BY

THOO YUAN LENG

This report is submitted as a partial requirement for the degree of Bachelor of Science (Hons) in Quantity Surveying Faculty of Engineering and Quantity Surveying INTI INTERNATIONAL UNIVERSITY (January, 2020)

ACKNOLEDGEMENT

My dedicated supervisor, Miss Nurulhuda binti Ahamad has been the pillar throughout the process of my research. Hence, I would like to express my sincere gratitude to her for being responsive to my questions, provide useful guidelines and advices upon necessary, and holding on to the patience for leading me.

Thus, I would like to thank my examiners, Sr. Masidah Binti Abdul Majid and Mr. Kong Sio Kah from the bottom of my heart. Comprehensive advices and constructive feedback have been given by them for the research projects, which is leading me to the right path for the research.

Besides, I would like to express my sincere gratitude to the respondents who spend their valuable time to provide fully cooperation in the dissertation. Hence, the opinion provided by them are invaluable and they had widened my knowledge world with the construction industry real-time experiences.

Lastly, I would like to thank my beloved family members and friends, who are constantly encouraging and supporting ne for this research. In additions, they have lent their helping hand to me while I have encounter issues in the process of completing this dissertation.

DECLARATION BY THE CANDIDATE

I Thoo Yuan Leng, I16010349 confirm that the work in this report is my own work and the appropriate credit has been given where the references have made to the work of other researchers.

he

Student Name : Thoo Yuan LengStudent ID: 116010349Date: 7/4/2020

ABSTRACT

Time overrun has been one of the major issues faced by the construction industry in Malaysia for the recent time being. Construction task has been executed in a slow manner as traditional method is being practiced and human being are being employed carry out those tasks. However, a series of technologies have been invented and being implemented in the construction industry in order to save time required for each construction task. In such a case, one of the newly implemented technology, Unmanned Aerial Vehicles (UAV) will be discuss and identify effect of its implementation towards time overrun issues. The project title for this dissertation is named The Application of Unmanned Aerial Vehicles (UAV) in Alleviating Time Overrun issues in the Construction Industry. The aim of this dissertation is to identify recognize UAV implementation does alleviate delay that lead to time overrun in the construction project. Data is collected from six respondents by using qualitative method as the number of UAV applicants in construction industry is limited. The targeted respondent for the study is G7 contractor who is financially capable to employ such technology in Selangor area. Thus, data collected will be coded and tabulated for data analyzation purposes. Content analysis is being employed to analyze data collected in the dissertation. Hence, the findings are showing the functions of UAV and those functions that can be implemented in the construction industry. In addition, the adoption level of UAV in the construction industry at the current moment is being scrutinize in the study. Although UAV implementation is increasing the efficiency and effectiveness in carrying out construction task, the results reveal the possibility of UAV implementation in lessen time overrun issues is low. The respondents did clarify that UAV is being employed as a tool in the construction industry.

Table of Contents

ACKNOLEDGEMENT	Ι
DECLARATION BY THE CANDIDATE	II
ABSTRACT	III
List of Table	VIII
List of Figure	Х
List of Abbreviation	XI
List of Appendices	XI
Chapter 1 Introduction	1
1.1 Background of study	1
1.2 Problem Statement	3
1.3 Research Goal	6
1.3.1 Research Aim	6
1.3.2 Objectives	6
1.3.3 Key Questions	6
1.4 Significance of the study	7
1.5 Proposed Research Methodology	9
1. 6 Limitation of the study	12
1.7 Propose content of each chapter	14
1.8 Expected Findings	16
Chapter 2 Literature Review	17
2.1 Introduction	17
2.2 Unmanned Aerial Vehicles (UAV)	19
2.2.1 UAV Terms and History	19
2.2.2 Classification of UAV	20
2.2.3 UAV Hardware	26
2.2.4 Applications of UAV in each Industries	32

2.2.5 UAV in Construction Industry	35
2.2.6 UAV Challenges	37
2.2.6.1 Technological gaps	37
2.2.6.2 Controlling bodies and Regulations	38
2.2.6.3 Safety, Privacy and Security Issues	39
2.3 Time overrun	41
2.3.1 Time overview	41
2.3.2 Factors that lead to time overrun in construction projects	43
2.4 The adoption level of UAV in enhancing time overrun issues in Construction Industry	47
2.4.1 Site Monitoring & Progression tracking	48
2.4.2 Communication and management	49
2.4.3 Site inspection	50
2.4.4 Volumetric Estimation	51
2.4.5 Overlap with BIM	55
2.5 Conclusion	57
Chapter 3 Research Methodology	59
3.1 Introduction	59
3.2 Research Methodology Framework	60
3.3.1 Primary Data	63
3.3.2 Secondary Data	63
3.4 Research Design	64
3.5 Data Collection	66
3.5.1 Interview Method	66
3.5.2 Sampling Method	67
3.5.3 Interview Style	69
3.5.4 Interview Type	69
3.6 Data Analysis	70

3.6.1 Content Analysis	70
3.6.2 Procedural Model of Structuring Content Analysis	73
3.7 Conclusion	76
Chapter 4 Data Analysis	77
4.1 Introduction	77
4.2 Interview Candidates	78
4.2.1 Designation of Respondents	79
4.2.2 Age of Respondents	80
4.2.3 Respondents' Construction Industry Experience	81
4.2.4 Respondents' UAV Experience	82
4.3 UAV-Implemented Projects	83
4.3.1 UAV Functions	84
4.4 The adoption level of UAV in Construction Industry	86
4.4.1 UAV-aided tasks in the Construction stage	87
4.4.1.1 Respondent A	88
4.4.1.2 Respondent B	90
4.4.1.3 Respondent C	92
4.4.1.4 Respondent D	93
4.4.1.5 Respondent E	94
4.4.1.6 Respondent F	95
4.4.2 Frequency of Tasks being carried out by Using UAV	98
4.4.3 Way for Operating UAV	100
4.5 Impacts on Projects after Implementation of UAV	102
4.5.1 Time Taken to perform Construction Tasks: UAV vs Traditional Method	103
4.5.2 Absence of UAV lead to Project Time Overrun	105
4.5.3 Implementation of UAV replaced Traditional Method	106
4.6 Concluding Remark	107

Chapter 5 Conclusion	112
5.1 Introduction	112
5.2 Summary of Findings	112
5.2.1 Objective 1: To understand the functions of UAV which is applicable in construction industry	the 112
5.2.2 Objective 2: To assess the adoption level of UAV application in the construction indu	ustry
	113
5.2.3 Objective 3: To identify the impact of implementation of UAV towards time over	errun
issues in construction industry	115
5.3 Research Limitations	115
5.4 Recommendations for Continuation Research	116
5.5 Conclusion	116
6.0 References and Bibliography	117

List of Table

Table 2-1 Summary of Pros and Cons of each type of UAV	8
Table 2-2 State of Art and Proposed solution for UAV Challenges	40
Table 2-3 Types of delay	42
Table 2-4 Categories for Factors of Time overrun	43
Table 3-1 Pros and Cons of Face-to-face interview versus telephone	67
Table 3-2 Coding Differences Among the 3 Approaches of Content Analysis	71
Table 4-1 Semi-structured Interview Candidates	78
Table 4-2 Lists of Projects involved by Respondents	80
Table 4-3 Functions of UAV	81
Table 4-4 Tasks operated by UAV in the Construction Industry	86
Table 4-5 Frequency of employing UAV in Construction Tasks	98
Table 4-6 Time taken for UAV and Traditional method to perform Construction Tasks	103
Table 4-7 Construction tasks that can be aided by UAV	107

List of Figure

Figure 1-1 Comparison of site vision of human eyesight and UAV bird-eye view	4
Figure 1-2 Flowchart of Research Methodology	9
Figure 1-3 Value of project by Category	12
Figure 1-4 Contractor categorized by state	13
Figure 2-1 Fixed Wings UAV	20
Figure 2-2 Rotary Wing UAV	21
Figure 2-3 Multi-rotor UAV	22
Figure 2-4 Fixed wing hybrid VTOL	23
Figure 2-5 UAV's Hardware	27
Figure 2-6 UAV's Frame	28
Figure 2-7 UAV's Propellers	28
Figure 2-8 UAV's motor	29
Figure 2-9 UAV's Lithium-ion Polymer (LiPo) battery	29
Figure 2-10 UAV's flight controller	30
Figure 2-11 Power distribution board	30
Figure 2-12 Electronic speed controller	31
Figure 2-13 Intuitive Remote Controller for UAV	31
Figure 2-14 Gimbal Camera equipped on DJI's Phantom 4	32
Figure 2-15 Images captured by Mechanical shutters vs. Electronic Shutter	32
Figure 2-16 Preprogrammed Site Motioning route performed by DroneDeploy Application	on 48
Figure 2-17 3D model captured by UAV	49
Figure 2-18 Site inspection performed by UAV	50
Figure 2-19 Stockpile Volumetric Calculation by Selecting its Perimeter	52

Figure 2-20 Main stockpile which is nearly invisible in orthomosaic layer become easily	viewable
in elevation layer	53
Figure 2-21 Best Fit Base Surface and Lowest Point Base Surface	53
Figure 2-22 UAV Volumetric Report generated by software	54
Figure 2-23 UAV data overlap with BIM for review and validation purposes	56
Figure 3-1 Research Methodology Flowchart	60
Figure 3-2 Flowchart of Deductive approach for Content Analysis	73
Figure 4-1 Designation of Respondents	79
Figure 4-2 Age of Respondents	80
Figure 4-3 Experience of Respondents	81
Figure 4-4 Project Management Process	86
Figure 4-5 Volumetric measurements by Acute 3D Viewer	89
Figure 4-6 BIM Review Time-lapse with UAV data	90
Figure 4-7 Pictures captured by using UAV for SRA Denai Alam, Shah Alam	94
Figure 4-8 Pictures captured by human from the ground for SRA Denai Alam, Shah Ala	um95
Figure 4-9 Progression Photo of Mercu Jalil Project by August 2019	96
Figure 4-10 Progression Photo of Mercu Jalil Project by October 2019	96
Figure 4-11 Progression Photo of Mercu Jalil Project by January 2020	97
Figure 4-12 Progression Photo of Mercu Jalil Project by March 2020	97

List of Abbreviation

UAV	Unmanned Aerial Vehicles
VTOL	Vertical take-off and landing
CAAM	Civil Aviation Authority of Malaysia
JUPEM	Jabatan Ukur dan Pemetaan Malaysia
GNSS	Global Navigation Satellite System

List of Appendices

Appendix A	Interview Questions	125
Appendix B	Plagiarism Report	127

Chapter 1

Introduction

1.1 Background of study

Construction sector is one of the major key drivers for the economics of Malaysia which contribute significantly towards the economic growth of the country. The construction industry has continuously contributing towards the national Gross Domestic Product at the rate of 3-5% for the past 20 years. It is playing a central role in driving economic growth and socio-economic due to its growth-initiating and growth-dependent nature (N A Mirawati, Othman and Risyawati, 2015). Completion on time for construction project is a significant parameter for a successful construction project (Ullah *et al.*, 2018).

However, delay is one of the frequent phenomena that rampant across the world in the construction projects which lead to time overrun in construction projects (Hasmori *et al.*, 2018; Ullah *et al.*, 2018). Time overrun is defined as completion of a project is exceeding its planned time, or project completion date is beyond the date that has been written in the contract (Rafieizonooz *et al.*, 2016). Thus, it will bring a series of negative impact to the project and the participating parties. Time overrun is often associated with additional cost of a project, such as direct, indirect and impact cost due to delay of completion (Hasmori *et al.*, 2018).

Time overrun is initiated with a few factors, which are project management and contract administration, contractor site management, material and machineries resource, in accurate evaluation of projects, labor supply, lack of communication between parties and mistakes during construction stage, and poor decision making (Sambasivan and Soon, 2007; Othman, Shafiq and Nuruddin, 2018). One of the new technologies that can be implemented in the construction industry to allay time overrun issue is Unmanned Aerial Vehicles (UAV).