E—

The Complexity of Teaching: Computability and Complexity

lechnologies:
i 1a
:elt;}ll,aIdr;d Concrete? Muhammad Aasim Qureshi
) UIT, PMAS-Arid Agriculture University Rawalpindi, Pakistan
25. . the maasim_q @hotmail.com
ier education on Onaiza Magbool
'C, 1999, Tokyo Dept. of Computer Science, Quaid-e-Azam University, Islamabad, Pakistan

Issues in E-learning onaiza@lums.edu.pk

or Online Programs, . " . . :
Abstract: Teaching computer science is as difficult as the subject itself, indeed even more
) . s0. A teacher of computer science has the dual responsibility of making the students
» environment using understand complex concepts/methods as well as equipping them with the ability to apply
ntries, SAINT 2003 these methods to solve problems. An understanding of the problem and its signiﬁc.anw is
essential and should be the first step. After making sure that students have gained an

. appreciation of the problem, ‘the teacher should guide them towards the solution(s).
‘ducation, Center for Guidance has to be “balanced” enough to leave room for independent thought, while at the
016 same time steering the students in the right direction. The traditional way of teaching is

through reading from the textbook and doing problems through rote memory of formula

and facts. There is a critical need to restructure the methodology of teaching, specially
cation and research, : . - |

weture for education _ Teaching Sc_ience and Mathematics: Discovery Based Learning course, an advanced level

d the deployment in

' PP 2048-2057 illustrate the topics which students find difficult to understand and the psychological
? reasons for these problems. Computability and Complexity is one of the most intellectually
‘ challenging courses that students study during the computer science programme. Its

instance is often only a part of the problem, and as the intricacies are revealed, the concept
becomes elusive once again. Godel’s theorem, which says that there are some true
statements that cannot be proved, is one such example. To teach any course, specially
such a challenging one, it is essential for the instructor to know the intricacies as well as
the complexity level of the topic that he/she is going to teach, There will be considerable
improvement in the students’ learning if the instructor has knowledge of the difficult

difficulties beforehand. In this regard our paper identifies intellectual challenges in the
selected course, while also pointing out reasons why some topics are particularly
challenging. Appreciating the fact that individual students process information and

conclusions on their own.

Keywords: Computability and Complexity, discovery based learning, recursion theorem,
Cantor’s theorem, reductions

Introduction

Computability and Complexity is one of the most intellectually challenging courses that
students study during a computer science programme. The abstract nature of the course
makes it particularly difficult for students as well as instructors. It has been observed that
students have different styles of learning. Some learn through examples taken from real
life, some learn through visualizations whereas some go through the steps of a problem in

170 171

detail in order to understand it. It is difficult to use any of these methods in computability

and complexity since the course is abstract and often no real life situations can be utilized

to explain or re-enforce the problem or solution. The steps taken to solve problems are

complex and often lengthy. Even when the instructor is guiding the students, it is difficult
‘ for students to move to the next step. In other words, students find it very difficult to
1 identify intermediate steps or the right operators which will bring them closer to the
4 solution. The reason for this is that students have to be able to relate the problem at hand
to the concepts they are familiar with. It is difficult to find this relation because problems
encountered in this course may not resemble problems they have come across previously.
Moreover, even if there is some similarity it may not be apparent.

The first step in teaching such a course effectively is to identify the intellectual
challenges in the course and the reasons why students find a topic or a step particularly
difficult. Once the challenge and its reason have been identified, the next step would be
to devise techniques to make it easier for the students to gain an understanding of the
topic as well as be able to use this understanding as a building block to solve more
complex problems. In this paper, we focus on identifying the intellectual challenges in
the course as well as reasons why these challenges exist. In the last section, we
demonstrate techniques to teach difficult topics which are based on the idea of guiding
. ‘ ‘ students in such a manner that they can arrive at conclusions on their own rather than
' g depending on the instructor.

| The outline of the paper is as follows. Section 2 presents an introduction to computability
and complexity. Section 3 presents a categorization of various topics in the course
according to their level of difficulty. It also describes techniques for teaching selected
topics. Section 4 presents the conclusions.

Computability and Complexity ’
iy - Computability and Complexity is an advanced level course in the theoretical computer
science category, offered at many universities having a graduate level computer science
o S ‘ programme. At most universities, it has two pre-requisites which include Analysis of
i ' Algorithms and Automata & Complexity Theory. The main focus of the course is on
1 theoretical aspects of computation rather than on practical problems. This course is a
B (] ‘pure’ computer science course that helps us understand and address philosophical
o questions about computations and limitations of computing. The basic question addressed

I e . is what are the fundamental capabilities and limitations of computer Error! Reference
‘., HE source not found.. In computability theory, the emphasis is on categorizing problems
= Bl according to whether they are solvable or not. In complexity theory, the aim is to
= b categorize problems as easy or hard.

When students register for the course, they are expected to be familiar with the concepts
1t of algorithms and time complexity, various algorithms for common problems e.g. sorting
searching etc., deterministic and non-deterministic finite automata and regular and
context free grammars. Having studied the course, students should have gained an
| appreciation of the fact that
: - certain problems cannot be solved
- itis possible to prove that certain problems are unsolvable

ods in computability
itions can be utilized
y solve problems are
tudents, it is difficult
d it very difficult to
r them closer to the
- the problem at hand
on because problems
ne across previously.

itify the intellectual
or a step particularly
ie next step would be
understanding of the
block to solve more
llectual challenges in
the last section, we
n the idea of guiding
their own rather than

ction to computability
topics in the course
for teaching selected

> theoretical computer
evel computer science
h include Analysis of
1s of the course is on
ems. This course is a
address philosophical
1sic question addressed
ater Error! Reference
categorizing prob.lems
theory, the aim is 10

niliar with the conceltpts
n problems e.g. sorting,
mata and regular and
should have gained an

172

|
|
|

that two infinite sets
When students are a
answers on their ow

- certain problems are complex, and the compl

exity arises from the inh
of the problem rather than from the computati

; €rent nature
onal model being used

Challenges

The table below lists topics in the course and categorizes them as so
hard challenges. For the intermediate level and hard topics, we have trieq to identj

intermediate steps/challenges which represent the mental jumps that are required tq
understand the topic. If an instructor is able to identify these intermediate challenges and
find means to help the students overcome them, the topic as a whole becomes easier. The
techniques that were used to reach the conclusions include a discussion with the

instructor, detailed discussions with students who have studied or are studying the coyrge
as well as our own experience as students of the course.

ft, interrnediate or

Table 2: Hard, Intermediate and Soft Topics in the Computability and Complexity
Course ' '

Level
Soft

Topic
Turing Machine Concepts, Multi
Complexity Classes
Universal Turing Machine, Dia
Savatch’s Theorem

Halting Problem, Recursion Theorem, Rices’ Theorem, Godel’

-Tape Turing Machines,

Equivalence of Turing Machines,

Intermediate

gonalization, Cantor’s Theorem, Cook Levin Theorem,

Hard

s Theorem, Reductions

In the sections below, we identify intermediate challenges within selected topics and
discuss techniques to overcome these challenges.

Cantor’s Theorem

Cantor’s first theorem states: Let C be the set of all infinite

0, 1 sequences and N be the
set of Natural numbers. Then |C| > IN].

Reasoning about Infinity: The First Challenge
The theorem performs a comparison between the set of real and natural numbers and
proves that the set of real numbers is larger than the set of natural numbers. In this
theorem, Cantor tackles the abstract notion of infinity and tries to quantify the concept
and reason about it in a meaningful way. Infinity is an elusive concept that defied
definition and measurement for a long time because it was viewed as something abstract
and immeasurable. One of the earliest recorded views on infinity is Aristotle’s view, who
says that the infinite is imperfect, unfinished and unthinkable 0. Galileo thought it wrong
to speak about comparisons between infinite quantities. The influence of the earlier
philosophers was so great that even til] the 19th century, scientists treated infinity as an
immeasurable quantity. In 1831, Carl Frederich Gauss said, “I protest against the use of
an infinite quantity as an actual entity; this is never allowed in mathematics.” Thus the
first challenge in teaching Cantor’s theorem is confronting an abstract or vague notion
and reasoning about it in a precise way. The theorem forces us to ask some fundamental
questions about infinity and infinite sets. Can we compare infinity? Can we say for sure
are equal? Can we say for sure that two infinite sets are unequal?
sked these questions, it is not possible for them to come up with
n. They need to be guided, and as the following paragraphs show, it

173

|

is possible to guide them with simple examples and concepts instead of involving them in
complex mathematical detail. These simple concepts lead them to a proof of the Cantor’s
theorem, and equip them with the knowledge to reason about problems related to infinity

in a logical manner.

The first step in studying Cantor’s theorem is to question students about infinite sets. This
generates interest in the theorem and also helps in dispelling certain wrong notions. Many
students, when asked what an infinite set is answer by saying that it is a set containing
everything. However, this certainly may not be the case. As an example, consider the set
of natural numbers. When asked whether it is an infinite set, their reply is in the
affirmative. It can then be demonstrated to them that this infinite set does not contain 1.1
(or for that matter any real number) and hence we can’t say that an infinite set contains
everything. Present to them more examples of infinite sets and ask questions which force
them to think and reason instead of guessing. One pair of sets which can be presented is:

A = {12385, il
B=1{45678......}

Ask the students which of the sets is larger. The answer to this question is mostly that set
A is larger. The reason for this answer is that B seems to have some ‘missing’ elements,
Another pair of sets of particular interest is:

A'={12,3.4....}
B’'={2.4.68.....)

Again the students seem to think that A’ is larger because B’ seems to have missed out
1,3,5.... One of the reasons why questions about infinite sets are interesting is that the
answer is often different from what one might intuitively think as correct. At this point, it
may be better to leave the questions unanswered. The students should be presented with
examples so that they can be gradually steered towards the correct answers themselves.

Performing Comparisons without Counting: The Second Challenge

As has been demonstrated by the examples above, a challenge that is faced when dealing
with infinite sets is that we have to perform comparisons even though we can’t count the
elements. To help students understand how it is possible to do so, a very simple example
can be given. Two four year olds are given chocolates in red and blue wrappers
respectively. They don’t know how to count, but can they check whether they have been
given the same number of chocolates? Students arrive at the answer quite quickly. The
children can compare the number of chocolates by pairing the chocolates, one red and
one blue. If pairs are made without any one color being left over, we can safely say that
the number of chocolates is the same. This is exactly the concept that is used in
comparing infinite sets. We don’t know how many elements there are, but if one-to-on¢
correspondence can be established between them, we can say that the sets are equal. It is
time now to revisit the pairs of sets in the example above. Having been introduced to the
concept of one-to-one correspondence, what do the students say about A and B? What
about A’ and B’? Their views should be different now, and in case they are still confused

174

tl
tl

If

ar
CC
se
an
pr
€8l
an
we

F(i

B
F(4

Car
in ¢
nun
am
diffi
all t
inte;
deci
Tak
deci;
diffe
Hen
in th
than

The «
natur

1 of involving them in
1 proof of the Canltq~ S
ems related to infinity

bout infinite sets. This
wrong notions. I_/le_my
[it is a set containing
mple, consider the set
their reply is in the
:t does not contain 1.1
in infinite set contains
questions which fqrce
1 can be presented is:

stion is mostly that set
ne ‘missing’ elements.

ms to have missed out
. interesting is that the
rorrect. At this point, it
ould be presented with
answers themselves.

t is faced when dealing
ugh we can’t count the
a very simple example
>d and blue wrappers
vhether they have been
wer quite quickly. The
hocolates, one red and

we can safely say th.at
meept that is used 10
e are, but if one-to-on'e

the sets are equal. It 18

been introduced to the
“about A and B? What
they are still confused:

174

form pairs of elements from the two sets to demonstrate the equality of both the above
sets. In the above cases:

Fi%) =x+3

F(x’) = x**2

Thus it is possible to find a one-to-one and onto fu
such a function can be found, it means
the two sets and thus the size of the two s
the cardinality of the set, and sets havyi
numbers are said to be countable,

answering it. To prove two sets to b
correspondence does not exist between th
set which does not have 3 one-to-one correspondenc

are talking about infinities coming in different sizes. This 1s a very interesting idea. The
proof that Cantor presented to show that a one-

F(1)=0.011011
F(2)=1.010101
F(3)=1.111111
F(4)=1.000101

. Take the st digit after the
mal point of the 1st number.
from the 2nd digit after the

natural number which has not been enumerated so far. For example we can take F(5) =
0.1000. The point to remember here is that even if that number has been paired up, we
can find another number using the same argument above. In this case, the number would
\ be 0.100010. If this was paired up, we can find yet another number, and so no matler
where we are in the list of natural numbers, we can find at least one missing number. This
is the diagonalization argument used by Cantor to prove that the set of real numbers is
larger than the set of natural numbers and that infinity comes in different sizes.

Recursion Theorem

The recursion theorem states that we have to come up with a Turing machine that can

obtain its own description and then computes with it. Itis a mathematical result that plays
i an important role in advanced work in the theory of computability.

To understand this concept let us summarize a paradox that arises in the study of life.
1- living things are machines
2- living things can self produce

R | 3- machines can not self produce

{ Statement 1 is true as we believe that organisms work in a mechanistic way. Statement 2
| is obvious but statement 3 is confusing as there can be machines that can produce
: themselves as in an automated factory of cars can be manufactured without human
involvement. In-short the simple answer is that the third statement is false i.e. Making
machines that can reproduce themselves is possible.

The recursion theorem is simple to state but it is difficult to make students understand the
concept, and even more difficult to make them understand the proof. To make them
i | understand the concept, an example of a self replicating program can be given. A typical ‘
I } example of such self replicating programs with which the students are expected to be |

‘ familiar are computer viruses. To allow the students to come up with the solution or come
: H close to the solution themselves, the method of teaching can be divided into the following
S stages/steps.

it Writing a Program that Outputs its own Code: The First Challenge

| =B Ask students 10 |)y de<iostreamh> void main(){

1 i = . : :
I come up Wit A cout << #include<iostream.h>\nvoid main(}{\n cout << }
- program that Luiy

» L

al outputs its own G v\/”/
B 5 code, without using ;
i Zi;er?:;f;mg' Vf[)l"tlﬁ Figure 1: Attemptimpting to output the exact code
| students shows that - program :
d students get stuck at
! the point where they have to incorporate the statement that they were currently writing.
The figure shows the situation where the program outputs ‘A’ but ‘A’ now also needs to
be incorporated in the cour statement as it has also become a part of the program and thus
b is to be output. This problem remains there no matter how one tries to write the cout
statement. From here students normally reach to the conclusion that no program can print

S

176

ke F(S) =
ed up, we
ber would
no matter
mber. This
wmbers 15

1e that can
t that plays

of life.

Statement 2
an produce
jout human
i.e. Making

derstand the
make them
. A typical
sected to be
tion or come
he following

he exact code.

ently writing.
also needs to
zram and thus
write the cout
yram can print

176

its own description/coding since a program that does this must be larger than its output.
At this point, to enhance the motivation level of the students, give them examples which
indicate that the problem is solvable. For example, if in a fully automated car factory,
robots can make cars then why can’t robots make robots Just like them?

Coming up with the Two Function Concept: The Second Challenge

We need an example to convince students that this seemingly impossible problem is not
impossible but what they need to do is to think differently. Put forward a new problem
from real life and ask its solution. “You have a bicycle with one pedal. The pedal moves,
only, in forward direction with the pressure. What you will do? Would you be able to
ride?” The obvious answer will be “no”. Now ask them “What do you need to ride
successfully?” Their answer will be that they need two pedals like the normal bicycles.
Normally students reach this conclusion quickly because they have memory schemaso in
the right place to support them. But you need to re-phrase the answer to make them
understand how you are forming a-bridge between the recursion theorem and its proof
through this example. In many cases re-phrasing a problem statement can result in better
understanding of the problem as well as cues for its solution. The rephrasing would be
“The pressure from one foot will move one pedal down and the second up, the pressure
from the second foot will move the second pedal down and at the same time move the
first pedal up as well”. Now you have given a clue to students to think differently. Ask
them to apply this result to the problem in hand of writing a self-replicating program.
Some of them will be able to relate the two feet to two functions/parts of programs, and
will suggest that the problem can be solved or at least attempted in terms of two
functions, one printing the other and vice versa. At this step students are very close to the
solution. They have reached the conclusion that they can come up with a program having

two functions X and Y such that X will print Y and Y will print X. Now you have to tell
the students how to do this. .

How to Write two Parts of Program: The Third Challenge

So here you need to say that let your program is in two parts say ‘X’ and ‘Y’ and you
need to print the whole program i.e. you have to print ‘X’ as well as “Y". It is obvious that
‘X" can easily print what ever is written in ‘Y’. But the question arises, “can we do the
same thing for printing ‘X’ . The simple answer is ‘No’. If we try this we will not be
able to get the required output. So here we have to do something different.

How the Second Part has to Print First Part: The Forth Challenge

To help the students form a better idea of how the functions will work, ask them the
following question. There are two accountants one working in the 1st shift and the other
in the 2nd shift. Accountants are used to writing each and every calculation/transaction
from start till end, now can accountant2 somehow tell what operations accountantl
performed in the morning? The answer is trivial, since accountant2 can tell exactly what
operations accountant] performed through the output that accountant! had generated.

Constructing the Turing Machine: The Fifth Challenge

Here the above example of accountants will work. The instructor has to tell the students
that as accountant2 can find out and tell what operations accountantl had performed in
the morning, the same thing we have to do to print ‘X’ from the output of ‘X’. Here a
small programming example can also be given.

177

Example Write, “Recursion theorem is a beautiful theorem” and ask them to find the
operations that lead towards this output. Students can easily do it as they have well-
established cues as well as schemas to handle such problems. Now tell students that if a
program can be written in a way so that it can output some predetermined output then

why not a function?

Let’s continue our discussion on the self-reflecting program where Y’ will print ‘X’ not
through the coding but through the output that ‘X’ had generated. For this thing we have
to write ‘X’ in such a way that it can be generated from its own output (and it is not a

tough thing to understand).

Coming towards the Turing machine, now after describing all this, students will,

hopefully, understand
how to come up with A ! R ik 2
such a Turing Machine, | (=P<st>) : L
quickly. You just have
to tell them the whole |
program is your Turing ~ Figure 2: Self-Reflecting Turing Machine
machine and the two here part A is equivalent to program
functions are two parts

of the Turing Machine
as shown in figure 2. Because of the example of the bicycle, students can easily come to

the point that this machine is to be implemented in two parts, A and BT. To get a
machine that outputs BT, define a sub-machine P<BT> (a submachine that prints the
encoding of BT like our function X) as q(<BT>)=<A> (it means that you have to code A
in such a way that its own output can describe its operations i.e. <A> is a function of
<BT>). The second part of machine takes the output of A (that is in fact encoding of BT
i.e. <BT>) from the tape and with its help outputs the encoding of A (like accountant2
can tell what accountant] did in the morning or example of the code given above).

Reductions
In order to prove that a problem is NP-complete, a known NP complete problem (e.g. the

SAT problem) can be reduced to the problem under consideration. In this way,.a solution
to the problem under consideration would lead to the solution of the SAT problem. Since
the SAT problem does not have a Polynomial time solution, neither can the problem
under consideration. This is the basic idea of reductions.

A large number of problems have been proven to be NP-Complete. We discuss below
reduction from 3CNF SAT to Clique. The 3NF problem can be stated as: Given a boolean
formula of the form: ¢ = (x1 v x2 v x3) A (x4 v x5 v x6)where xi is a variable that can
be either true or false, can we assign the variables true/false values such that the formula
evaluates to true (is satisfied)? A clique can be defined as a complete subgraph. Finding 4

clique in a graph is an NP-complete problem.

178

< M T oty o~

= s
PN

St
Tl
ca

them to find the
they have well-
students that if a
rined output then

will print ‘X’ not
his thing we have
ut (and it is not a

is, students will,

ing Machine
fo program

can easily come to
and BT. To get a
\ine that prints the
you have to code A
A> is a function of
act encoding of BT
A (like accountant2
iven above).

te problem (e.g. Fhe
this way,.a solution
SAT problem. Since
er can the problem

|
.. We discuss below |
L as: Given a boolean |
's a variable that can
such that the formula
- subgraph. Finding a

178

Deciding the Direction of Reduction: The First Challenge
It is important to emphasize that an NP complete problem needs to be reduced to the

problem under consideration and not the other way round. Simple as this may seem, the
reason is sometimes difficult to understand.

Most of the students do not realize the reason or the essence of reductions. One reason for
this confusion is their previous experiences with mathematical proofs. In mathematical
proofs, they often have to prove a given problem to be the same as another given
problem. To do this, they hormally start out with the first problem and carry out steps to
prove it equivalent to the second. In the case of reductions, even though a problem has to
be proved to be equivalent to another set of problems, the direction of proof is the
opposite i.e. we take a problem from the second set and prove it to be equivalent to the
first problem. Having learnt to prove things in a certain way, students now have to
contradict their past experience and unlearn their previous learning. This represents a
case of set effects i.e. students become biased by their previous knowledge and prefer to
use certain steps to solve a problem.

Selecting the Problem for Reduction: The Second Challenge

A number of NP-complete problems exist. It may be easier to reduce one NP-complete
problem to the considered problem and may be quite difficult to reduce another one,
Quite a large number of NP-complete problems need to be considered before a suitable
selection can be made. When experts in the subject choose an NP-complete problem to
reduce from, very often apparently there is no relation between the two. Experts can
utilize their experience to make a selection, but this is often not obvious to students who
are neither familiar with too many NP-complete problems nor can find a relation between
two problems when on the surface the problems look different. The NP completeness of
the clique problem is often proved by a reduction from 3CNF. To explain the relation
between the two, it is necessary to work on some examples of CLIQUES first.
Familiarize students with the visual technique of finding CLIQUES of sub-graphs. This
will clarify the concept of CLIQUES and will further help them as well as the instructor
in the proof. Basically this exercise will generate some memory structures in their short
term memory as well as in their long term memory.

We start our reduction from a very simple formula and gradually complicate the formula
at each milestone, asking them a question again and again, “Convert the CNF formula
into a graph such that when you take its clique it will give you a set of nodes so that if

you assign ‘true’ to the corresponding variables in the formula you will get a required
result”.

Performing the Reduction: The Third Challenge
Normally a graph is constructed directly from a CNF formula without describing the
reasons why the graph was constructed in a certain way. We suggest the following steps

to explain this reduction:
Step I:

The simplest formula that we decided to put forward is: ¢ = x1. This problem
can be represented through a graph with only one vertex/node. Now ask them to @

179

calculate the clique of this problem. They will answer that a clique of size 1 exists, and
the set contains only one vertex, xI. To enable them to find a relation between the
formula and a clique, give them a hint: If 1 is assigned to elements in the set and then
these values are put in the formula the correct answer, i.e. “true” is obtained. This
example should enable them to realize that we can use the 3-SAT problem to reduce
from.

Step II:

After having used the sirﬁple formula ¢ = x1, move to the next level and change the
formula to ¢ = (x1 v x2). Students will be able to tell that two vertices

are required to represent the problem. The question arises whether we @ @
should put an edge between them or not, to complete the graph. That is

an interesting question and students will surely come up with the answer that you need
not put an edge between the two vertices. The reason is that the formula is true if either

one of x1 or x2 is true. The rule that they will get from here is, “If there is OR in two
variables then you need not add edge in the corresponding vertices™

Step III:
Now move to thr next level and change the formula to ¢ = (x1v x2v @ @

x3). The students themselves will come to the conclusion and the

answer will not be required from the instructor’s end. The rule that they @
made in step 2 will be confirmed. You only need to ask these rules

from the students and write them on the board.

Step I'V:

Now modifying the intermediate step a little bit we change formula as:¢ = (x1 A x2) and
again put forward the same old question. Most probably students themselves will come to
the conclusion that there must be an edge between the two. They will
realize that in order to make formula “True” they need truth

assignments to both of the variables. And it is possible only if you have a clique of size 2
and both corresponding vertices/nodes are selected in the clique set. Here you can add a
comment that x1 and x2 can be two sub-graphs that will help us further in the proof. The

rule that they will get from this step is “If there is an AND in two vertices/sub-graphs
then edge(s) are added between/among the corresponding vertices”.

Step V:
Now moving towards out next intermediate step we made a change in @

the formula as: ¢ = (x1 A x’1) and again put forward our old question. @
Most probably students themselves will come to the conclusion that
there must not be an edge between the two. Because if there was an edge then both will
be selected in cligue set and the selection of the two in clique set will give a contradiction
as x1 and x’1 both cannot be true at the same time. So the rule that they themselves will
make would be, “If there one of the two vertices is the complement of the other then the
edge is not added in the two corresponding vertices”.

Step VI:

"size 1 exists, and
ation between the
n the set and then
is obtained. This
problem to reduce

el and change the

@ @ |

swer that you need
wila is true if either
there is OR in two

® ©
: ©

1s:9 = (x1 A x2) and
nselves will come to

 O)—®

we a clique of size 2

Here you can add a
her in the proof. The
) vertices/sub-graphs

»in ‘
10
hat s
n edge then both “:’111 |
Il give a contradictlgn |
- they themselves will 5

t of the other then the !

Now modify your intermediate step ¢ = (x1A X2 x3) and again put forward the same old
question. Here students themselves will come to the conclusion that there must be an

edge between the three as there is ANDing and there in no NOTing. This step confirms
the rule that they established in step I'V.

Step VII:
Now modify your intermediate step to the next difficulty level like

d=(x1vx2)A(x3vx4)and again put forward the same old

question. Here the problem is to combine two different problems ° °
(of ANDing and ORing) into one. Here you have to convince

them that they still can do it you just have to repharase it like “we

need phi to be true and phi can be true if we get true out of first

term as well as from 2nd term. A slight hint would be enough at °
this stage. Just tell them to handle each term independently and

then apply ANDing on two sub-graphs as done earlier. Here the will come up with a rule
that will be, basically, the combination of different rules, “Handle the terms

independently and then add edges between two sub-graphs such that no violation of
previous rules are made”.

Step VIII (Final Step):

Now moving towards our final step
and presenting the right 3-CNF
boolean formula as: ¢ = (x1 v x2 v x3)
AXZVX3VX4)Ax2vx] v x4)
and ask students to come up with the
graph them selves using the rules they
have made in previous 7 steps. And
optimistically they will come up with
the right graph. Using the rule found in
step VII they will be able to handle
each term independently and come up
with three independent sub-graphs and
then combine them according to the
rules defined by them.

By carrying out the above steps and gradually increasing the complexity level of the
presented problem, students can be guided towards a proof of the NP-completeness of the
clique problem. When a graph is constructed as suggested above, students fully
understand the reason behind each step and hence can solve related problems as well as
more complex problems with ease.

What is left behind proving that CLIQUE is NP-Complete is that if, as you have seen in
steps, you could find out the CLIQUE of the graph then you can find the required results
for 3-CNF. But as we know that 3-CNF is NP-Complete so there exist no such algorithm
from which we can find CLIQUE so CLIQUE is also NP-Complete.

Now coming towards the second problem i.e. Vertex Cover (Finding a set of minimum
most vertices that cover the whole graph). Now just like CLIQUE, you start with some

181

practice examples to consolidate the definition and clarify the definition in the minds of
students. If you ask them to find some way to prove it to be NP-Complete then, at least
they would not be lost at the very start but they would be able to find some way to
attempt the problem (and our observation confirms it).

Conclusions

Computability and Complexity is a difficult subject to teach and presents many
intellectual challenges. Most of these challenges arise due to the abstract nature of the
course. Studies in learning show that learning proceeds through the development of
mental structures which remain long after the actual sentences or phrases studied have
been forgotten. These mental structures are strengthened through visualization and
examples. A new concept is.easier to remember if it can be related to existing concepts
and ideas with which students are familiar.

Techniques/Approaches discussed above were implemented in classes and the results (in
the form of feedback) were studied in two categories

(i) newly enrolled students

(ii) previously failed students (studying these topics for the second time)

The results showed that the techniques were successful in making them understand such
concepts. The results from second category of students were then analyzed. To nullify the
misconception that students of second category understood these topics because they
were studying this course a second time, the students were interviewed and asked the
reasons for improved performance. The reason that they gave for their better
understanding was the way of handling the concepts: Small jumps and smooth inclination
rather than big jumps from one point to the second led them to grasp things easily.

To tackle a subject as challenging as computability and complexity, our first step is to
categorize topics according to their level of difficulty. Having done this, the next step is
to identify within each topic, steps which are particularly challenging for students and the
reasons why the students find the step difficult. Through this identification, the instructor
knows which topics need more time and appropriate examples can be given to make the
topic easier to understand. In this paper we present challenges for three difficult topics,
the reasons for difficulty and techniques to overcome these challenges. This analysis is
useful for instructors as well as students, and can enhance students’ learning considerably
while also providing them with the means to think about and solve more complex
problems independently.

References

Sipser, M., Introduction to the theory of computation, PWS publishing company, 1997

G. D. Allen, The History of Infinity, Department of Mathematics, Texas A&M
University, 1999 J.R. Anderson, Cognitive psychology and its implications, 3rd
edition, Freeman and Company 1990

http://www.heartofmath.com/IR/

http://www.mathacademy.com

