CHARACTERIZATION OF BIOSURFACTANT PRODUCED BY PSEUDOMONAS AERUGINOSA EXPOSED TO CADMIUM AND COPPER

TAN WENG LIANG

DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF BACHELOR OF BIOTECHNOLOGY (HONOURS)

FACULTY OF HEALTH AND LIFE SCIENCES
INTI INTERNATIONAL UNIVERSITY
PUTRA NILAI, MALAYSIA

2018
NON-PLAGIARISM DECLARATION

By this letter I declare that I have written this thesis completely by myself, and that I have used no other sources or resources than the ones mentioned.

I have indicated all quotes and citations that were literally taken from publications, or that were in close accordance with the meaning of those publications, as such. All sources and other resources used are stated in the references.

Moreover I have not handed in a thesis similar in contents elsewhere.

In case of proof that the proposal has not been constructed in accordance with this declaration, the Faculty of Health and Life Sciences has the right to consider the research proposal as a deliberate act that has been aimed at making correct judgment of the candidate's expertise, insights and skills impossible.

I acknowledge that the assessor of this item may, for the purpose of assessing this item,

- reproduce this assessment item and provide a copy to another member of the University; and/or,
- communicate a copy of this assessment item to a plagiarism checking service (which may then retain a copy of the assessment item on its database for the purpose of future plagiarism checking).

In case of plagiarism the examiner has the right to fail me and take action as prescribed by the rules regarding Academic Misconduct practiced by INTI International University.

TAN WENG LIANG
Name

II4004757
I.D. Number

[Signature]
Signature

2/8/2018
Date
DECLARATION

I hereby declare that the work in this thesis is my own except for quotations and summaries which have been duly acknowledged, and completed under the supervision of Dr. Wong Kok Kee

TAN WENG LIANG

114004757

6TH/JULY/2018

DR. WONG KOK KEE

(SUPERVISOR)

(CO-SUPERVISOR if any)
ACKNOWLEDGMENT

I hereby take this opportunity to thank my supervisor, Dr. Wong Kok Kee for his continuous guidance, suggestion and motivation throughout the entire process of the final year project. This thesis cannot be completed efficiently without the mass guidance and assistance.

I would also like to thank Dr. Chong Mee Yoke for providing meaningful assistance throughout the FTIR analysis. The vast knowledge regarding FTIR taught is indeed interesting and will be kept in mind.

Tons of gratitude are given to the INTI International University, Faculty of Health and Life Sciences for providing me a chance to immerse myself in this final year project. Not to mention the adverse assistance from all lectures, peers and lab staff.

Last but not least, I would like to thank my family for their unconditional support. With the assistance, guidance and support from all, the thesis is finally compiled and submitted.
ABSTRACT

Cadmium and copper are extensively used in different industrial sectors before being discharged as industrial effluent and causing pollution towards the environment and increases the health risk when being uptake by humans. The aims of this study were to evaluate the effect of Cd and Cu to induce production of biosurfactants and to characterize the biosurfactant produced using Fourier-Transform Infrared Spectroscopy (FTIR). Results from the study showed that *P. aeruginosa* was able to tolerate Cu and Cd up to 2.0 mg/L and 0.1 mg/L respectively, which both concentration were 10x higher than the permissible limit allowed by the Environmental Quality Act (Industrial Effluent) Regulation, according to the Department of Environment, Malaysia. Recovery of biosurfactant from *P. aeruginosa* exposed to Cu and Cd were 0.051 g/g of bacterial cells and 0.125 g/g of bacterial cells, respectively. FTIR analysis obtained from control biosurfactant sample without metals induction, and biosurfactant samples induced with Cu and Cd, respectively showed major peaks at 3276 and 1351 cm⁻¹ suggesting the presence of protein and lipid. This suggests that the type of biosurfactant produced by *P. aeruginosa* was lipoprotein in the presence of Cu or Cd, as in the normal condition without metal induction.
TABLE OF CONTENT

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>NON-PLAGIARISM DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>TABLE OF CONTENT</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF ABBREVIATION</td>
<td>x</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

2 LITERATURE REVIEW
 2.1 Heavy Metals
 2.1.1 Cadmium
 2.1.2 Copper
 2.2 Heavy Metal Regulations
 2.3 Remediation Of Cadmium And Copper
 2.4 Biosurfac tant

3 MATERIALS AND METHODS
 3.1 Inoculum Preparation
 3.2 Preparation Of Heavy Metal Stock Solution
 3.2.1 Cadmium Solution Preparation
 3.2.2 Copper Solution Preparation
 3.3 Dose Response Test
 3.4 Biosurfac tant Production
 3.5 Isolation And Purification Of Biosurfac tant
 3.6 FTIR Analysis Of Biosurfac tant
 3.7 Statistical Analysis

4 RESULTS
 4.1 Growth Of *Pseudomonas Aeruginosa* On Agar
 4.2 Dose Response Test
 4.3 Production and Analysis of Biosurfac tant
 4.4 FTIR Analysis

5 DISCUSSION

vi
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Functions of different types of heavy metals in industry</td>
<td>3</td>
</tr>
<tr>
<td>2.2</td>
<td>Average concentration of Cadmium in Different Areas</td>
<td>4</td>
</tr>
<tr>
<td>2.3</td>
<td>Average concentration of Copper in different areas in Malaysia</td>
<td>5</td>
</tr>
<tr>
<td>2.4</td>
<td>Summary of permissible limit of Cadmium and Copper in sewage effluent and drinking water</td>
<td>5</td>
</tr>
<tr>
<td>2.5</td>
<td>Comparison of different heavy metals remediation methods</td>
<td>6</td>
</tr>
<tr>
<td>2.6</td>
<td>Types of biosurfactant families and examples</td>
<td>7</td>
</tr>
<tr>
<td>2.7</td>
<td>Types of glycolipid biosurfactant and their sources</td>
<td>7</td>
</tr>
<tr>
<td>3.1</td>
<td>The contents of incubation flask for dose response test</td>
<td>9</td>
</tr>
<tr>
<td>3.2</td>
<td>The contents of incubation flask for actual biosurfactant production</td>
<td>10</td>
</tr>
<tr>
<td>4.1</td>
<td>Pooled weightage of the bacterial pellet and biosurfactant recovered</td>
<td>15</td>
</tr>
<tr>
<td>4.2</td>
<td>Bands assignments of biosurfactant from Pseudomonas aeruginosa in control sample and sample exposed to Copper and Cadmium</td>
<td>17</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Growth of Pseudomonas aeruginosa colonies on nutrient agar</td>
<td>11</td>
</tr>
<tr>
<td>4.2</td>
<td>Gram negative Pseudomonas aeruginosa</td>
<td>12</td>
</tr>
<tr>
<td>4.3</td>
<td>Growth of Pseudomonas aeruginosa induced with 2.0 mg/L of Copper</td>
<td>12</td>
</tr>
<tr>
<td>4.4</td>
<td>Growth of Pseudomonas aeruginosa induced with 20.0 mg/L of Copper</td>
<td>13</td>
</tr>
<tr>
<td>4.5</td>
<td>Growth of Pseudomonas aeruginosa induced with 0.1 mg/L of Cadmium</td>
<td>13</td>
</tr>
<tr>
<td>4.6</td>
<td>Growth of Pseudomonas aeruginosa induced with 1.0 mg/L of Cadmium</td>
<td>14</td>
</tr>
<tr>
<td>4.7</td>
<td>Growth of Pseudomonas aeruginosa exposed to 2.0 mg/L of Copper and 0.1 mg/L of Cadmium and Control</td>
<td>15</td>
</tr>
<tr>
<td>4.8</td>
<td>FTIR spectra of biosurfactants from Pseudomonas aeruginosa in control sample and sample exposed to Copper and Cadmium</td>
<td>16</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>Cd</td>
<td>Cadmium</td>
<td></td>
</tr>
<tr>
<td>CdCl₂</td>
<td>Cadmium chloride</td>
<td></td>
</tr>
<tr>
<td>CFU/mL</td>
<td>Colony-forming units per milliliter</td>
<td></td>
</tr>
<tr>
<td>cm⁻¹</td>
<td>Reciprocal wavelength</td>
<td></td>
</tr>
<tr>
<td>Cu</td>
<td>Copper</td>
<td></td>
</tr>
<tr>
<td>CuCl₂</td>
<td>Copper chloride</td>
<td></td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier Transform Infrared Spectroscopy</td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
<td></td>
</tr>
<tr>
<td>g/g</td>
<td>Gram biosurfactant/gram bacteria</td>
<td></td>
</tr>
<tr>
<td>KBr</td>
<td>Potassium bromide</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>Litre</td>
<td></td>
</tr>
<tr>
<td>LB</td>
<td>Lysogeny Broth</td>
<td></td>
</tr>
<tr>
<td>mg</td>
<td>Milligram</td>
<td></td>
</tr>
<tr>
<td>mg/L</td>
<td>Milligram per litre</td>
<td></td>
</tr>
<tr>
<td>NaCl</td>
<td>Sodium chloride</td>
<td></td>
</tr>
<tr>
<td>OD</td>
<td>Optical density</td>
<td></td>
</tr>
<tr>
<td>rpm</td>
<td>Rounds per minute</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

Heavy metals are needed in diverse of fields like industrial, domestic, agriculture and even medical (Tchounwou, Yedjou, Patlolla & Sutton, 2012). Heavy metals are either being produced as a side product or used as a catalyst to accelerate the production process. Industrial effluent that contains heavy metal are being discharged without proper filtration or treatment (Buhari, & Ismail 2016), contributing to environmental heavy metal pollution. In order to arrest the situation, bioremediation techniques using biosurfactant are being given attention lately as compared to synthetic surfactants due to their excellent qualities, for instance, degradability, efficiency, lower toxicity and the environment compatibility (Moussa, Mohammed & Samak, 2014).

Numerous studies showed different bacteria biosynthesized different types of biosurfactants (Pacwa-Plociniczak, Plaza, Seget & Cameotra, 2011). According to Vijayakumar & Saravanan (2015), glycolipids like rhamnolipids are normally associated with *P. aeruginosa*, whereas trehalolipids are usually produced by *Mycobacterium, Arthrobacter* and *Nocardia* species, while sophorolipids are an example of biosurfactant produced by yeast. Despite that, it is unclear how different types of pollutants will affect the production of biosurfactants. For instance, Patowary, Patowary, Kalita & Deka (2017) reported on the induced production of rhamnolipids by *Pseudomonas aeruginosa*, exposed to crude oil. In comparison, Christova, Tuleva, Cohen, Ivanova, Stoef, Disheva & Stoineva (2011) demonstrated that *P. aeruginosa* cultured using different hydrocarbon source like glycerol, *n*-hexadecane and *n*-alkanes produced rhamnolipids with different ratio of rhamnolipids congeners that will decide the biosurfactant to be grouped mono-rhamnolipids or dirhamnolipids. However, to date, no studies have clearly demonstrated if different heavy metals will have induced different production of biosurfactant in *P. aeruginosa*.

Thus, in order to better understand the mechanism of bacteria regulating the toxicity of heavy metals via metal chelation by biosurfactant, this study has two aims; (1) to evaluate the effect of heavy metals (Cadmium and Copper) on biosurfactants and (2) to characterize the biosurfactant using Fourier-transform Infrared
Spectroscopy which will help in the identification of the types of biosurfactants produced.

2.1 HEAVY METALS

According to Table 2.1, the specific heavy metals present in the environment were copper, zinc, lead, and mercury. Copper and zinc have been identified as the most toxic among these heavy metals. Table 2.1 shows the types of metals and their toxicity levels.

<table>
<thead>
<tr>
<th>Metal</th>
<th>Toxicity Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper</td>
<td>Toxic</td>
</tr>
<tr>
<td>Zinc</td>
<td>Toxic</td>
</tr>
<tr>
<td>Lead</td>
<td>Toxic</td>
</tr>
<tr>
<td>Mercury</td>
<td>Toxic</td>
</tr>
</tbody>
</table>

Table 2.1: Types of Heavy Metals
CHAPTER 2

LITERATURE REVIEW

2.1 HEAVY METALS

According to Jaishankar et al., (2014), heavy metals refer to groups of metal which has a specific density higher than 5 g/cm³ such as cadmium, copper, mercury, lead and zinc. Heavy metals have extensive function in various industrial processes (Sharma, Singh & Siddiqi, 2014). Table 2.1 shows the industrial applications of different heavy metals. Due to the extensive use of heavy metals, they have caused pollution towards the environment. Amongst the various heavy metal, Cd and Cu were found to be most toxic towards the environment compared to others (Fargasova, 2004)

<table>
<thead>
<tr>
<th>Types of Heavy Metals</th>
<th>Function</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium</td>
<td>Used as electrode in batteries</td>
<td>Chunhuabundit, 2016</td>
</tr>
<tr>
<td></td>
<td>Function as pigment and coating for plastic</td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>Used in electrolytic refining process</td>
<td>PubChem, 2018 (a)</td>
</tr>
<tr>
<td></td>
<td>Used as raw material for electronics</td>
<td></td>
</tr>
<tr>
<td>Mercury</td>
<td>Extensively used as industrial catalyst</td>
<td>Jan et al., 2015</td>
</tr>
<tr>
<td></td>
<td>Used in measuring equipment</td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>Manufacturing of automobiles</td>
<td>Flora et al., 2012</td>
</tr>
<tr>
<td></td>
<td>Act as catalyst in paints</td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td>As coating for iron</td>
<td>PubChem, 2018 (b)</td>
</tr>
<tr>
<td></td>
<td>To create alloy</td>
<td></td>
</tr>
</tbody>
</table>
2.1.1 Cadmium

Cadmium (Cd) is rarely present naturally in the environment, but is normally produced as a side product in industrial activities (Kim, Kim & Seo, 2015) i.e. in paint production as color pigment, in alkaline batteries as electrode, in alloy production and amongst others (Jaishankar, Tseten, Anbalagan, Mathew & Beeregowda, 2014), which causes its released to the environment as industrial waste.

In Malaysia, there are several past studies that demonstrated level of Cd in different areas of Malaysia, which requires immediate attention to remediate them. Table 2.2 summarizes the concentration of Cd in different areas in Malaysia.

<table>
<thead>
<tr>
<th>Area</th>
<th>Average Concentration (mg/L)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semenyih River, Selangor</td>
<td>0.98</td>
<td>Gasim et al., 2000</td>
</tr>
<tr>
<td>Bertam River, Pahang</td>
<td>0.83</td>
<td>Haron et al., 2016</td>
</tr>
<tr>
<td>Langat River, Selangor</td>
<td>0.04</td>
<td>Shazili et al., 2015</td>
</tr>
</tbody>
</table>

2.1.2 Copper

Copper is a naturally present heavy metal, which is used as a raw product for manufacturing copper coating, copper wire and are also incorporated with different metals to form brass. Cu compound are also used as preservatives for food, leather and wood (Pubchem, 2018b).

Past studies also showed that the concentration of Cu has reached a worrying rate as it could cause Cu poisoning if not being taken care of. Table 2.3 shows the summary of areas being polluted by Cu.
Table 2.3 Average Concentration of Cu in different areas in Malaysia

<table>
<thead>
<tr>
<th>Area</th>
<th>Average Concentration (mg/L)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laloh River, Johor</td>
<td>146.5</td>
<td>Maadin et al., 2016</td>
</tr>
<tr>
<td>Balok River, Pahang</td>
<td>24.2</td>
<td>Abdullah et al., 2015</td>
</tr>
<tr>
<td>Tunggak River, Pahang</td>
<td>0.4</td>
<td>Sujaul et al., 2013</td>
</tr>
</tbody>
</table>

2.2 Heavy Metals Regulations

Due to the toxicity of both Cd and Cu, different countries have set up different guidelines to regulate these metals as shown in Table 2.4.

Table 2.4 Summary of permissible limit of Cd and Cu in sewage effluent and drinking water.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Cadmium (mg/L)</th>
<th>Copper (mg/L)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permissible limit in sewage</td>
<td>0.010</td>
<td>0.200</td>
<td>Department of Environment, 2009</td>
</tr>
<tr>
<td>effluent (mg/L)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permissible limit in drinking water</td>
<td>0.003</td>
<td>1.000</td>
<td>Ministry of Health, 2000</td>
</tr>
<tr>
<td>(mg/L)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.3 REMEDIATION OF CADMIUM AND COPPER

Conventional methods to curb the heavy metals contamination can be divided into physical remediation and chemical remediation (Khalid et al., 2017). Although the remediation methods have shown promising efficiency and results, however the methods are not environmental friendly as many chemicals are used, such as chemical absorbent (Chen et al., 2017). Hence, biosurfactants has come into the spotlight due to its environmental friendly characteristic. Table 2.5 shows the comparison between different heavy metals remediation methods employed.