Low-Energy Plasma Focus Proves Medical Grade Radioactivity Production

Article in IEEE Transactions on Plasma Science · July 2018
DOI: 10.1109/TPS.2018.2854920

4 authors, including:

Hossein Sadeghi
Amirkabir University of Technology
11 PUBLICATIONS 8 CITATIONS

Samaneh Fazelpour
Amirkabir University of Technology
5 PUBLICATIONS 3 CITATIONS

Sing Lee
INTI International University
407 PUBLICATIONS 4,685 CITATIONS

Some of the authors of this publication are also working on these related projects:

Ion acceleration mechanism in PFD View project
Kansas State University Dense Plasma Focus View project

All content following this page was uploaded by Hossein Sadeghi on 09 October 2018.

The user has requested enhancement of the downloaded file.
Low-Energy Plasma Focus Proves Medical Grade Radioactivity Production

M. V. Roshan, H. Sadeghi, S. Fazelpoor, and S. Lee

Abstract—The plasma focus (PF) emerged as a potential prospect to produce radionuclide, but the experimental data are not significant in favor of practical medical radioactivity. Empirical scaling grants a set of magnetic lens to enhance the nuclear activity. The experimental radioactivity of low-energy devices is in the range of kilobecquerel and rises to megabequerel by optimizing and operating at a few hertz. Magnetically driven ion beam improves the radioactivity to the prescribed value of gigabequerel for nuclear imaging. Magnetic radioactivity competence scheme reflects the vision that small PF, as a smart alternative to cyclotron, generates medical grade radioactivity.

Index Terms—Plasma Sources.

I. INTRODUCTION: NUCLEAR ACTIVITY DISCIPLINES IN PF

Most of the experimental data on the nuclear activity production in the plasma focus (PF) have been reported on the solid targets, more specifically graphite, to produce 13N radioactivity. For gas targets, however, limited experimental data are available.

In the gas target experiments, chamber is filled with a mixture of gases constituting the target-projectile system. Gas mixture is composed of low-Z isotopes (hydrogen, deuterium, or helium) mixed with high-Z isotopes (nitrogen, oxygen, carbon dioxide, or air). Fast ions are trapped in magnetized plasma domains, and the nuclear reaction is induced by collisions with nuclei in the background plasma. Positron emitted from radioactive nuclei is measured by Geiger–Müller (GM) counter mounted inside the PF chamber. GM survives on electromagnetic shock and plasma jet. Seven-kilojoule PF operated in gas target experiments produces 100 kBq of 13N through 12C(d, n)13N and 200 kBq of 15O through 14N(d, n)15O [1]. Identical PF at a different lab generated 37 kBq of 13N and 20 kBq of 15O [2]. The only difference between these two experiments was that β^+ was measured inside the PF chamber in [1] and 511 keV γ from positron annihilation was measured outside the chamber in [2]. It was suggested that the reaction yield Y in plasma, gas target, is scaled with square of the energy stored in the capacitor bank: $Y \propto E^2$ [1].

In the solid target experiments, graphite is located on the forward PF axis at a typical distance of >10 cm from the pinch, and exposed to the accelerated deuterons [3]–[6]. The target was then removed from the PF chamber and placed in contact with a bismuth germanate scintillation detector. 13N undergoes β^+ decay and 511 keV γ is produced by positron–electron annihilation process in the graphite target.

Predicted solid target nuclear activity with similar PF energy to that of gas target is 20 kBq of 13N. If $Y \propto E^2$ for gas target is accepted, then the radioactivity generation in gas target would be higher than that in the solid target. However, the data on gas target radioactivity experiments are not sufficient and there are certain limitations for higher radioactivity production with this method.

One of the techniques to increase the radioactivity is to operate the device at high repetition rate. The NX2 device running at 1 kHz for 30 min generates an activity of 1 GBq [7]. It has been shown theoretically that if the time of PF operation is equal to the half-life of the particular radioisotope, then 10-Hz repetition rate with 10-kJ PF produces 50 mCi of 11C and with 50-kJ PF produces 1 Ci of 18F [1].

The maximum charge rate of the capacitors available today is 100 kJ/s (demands cooling system); hence, 1-MJ PF (with

<table>
<thead>
<tr>
<th>PF Discharge Energy (kJ)</th>
<th>Experimental Radioactivity (kBq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>76</td>
<td>160</td>
</tr>
<tr>
<td>57</td>
<td>86</td>
</tr>
<tr>
<td>20</td>
<td>28</td>
</tr>
<tr>
<td>10</td>
<td>23</td>
</tr>
<tr>
<td>6</td>
<td>4.88</td>
</tr>
<tr>
<td>5</td>
<td>4.35</td>
</tr>
<tr>
<td>4.7</td>
<td>3.73</td>
</tr>
<tr>
<td>2</td>
<td>1.45</td>
</tr>
<tr>
<td>2</td>
<td>5.6</td>
</tr>
</tbody>
</table>

Manuscript received January 27, 2018; revised May 22, 2018; accepted July 6, 2018. The review of this paper was arranged by Senior Editor J. L. Lopez. (Corresponding author: M. V. Roshan.)

M. V. Roshan is with the School of Particles and Accelerators, Institute for Research in Fundamental Sciences, IPM, Tehran 19395-5746, Iran (e-mail: mroshan20@yahoo.com).

H. Sadeghi is with the School of Particles and Accelerators, Institute for Research in Fundamental Sciences, IPM, Tehran 19395-5746, Iran, and with the Physics Department, Amirkabir University of Technology, Tehran 15875-4413, Iran.

S. Fazelpoor is with the Physics Department, Amirkabir University of Technology, Tehran 15875-4413, Iran.

S. Lee is with Center for Plasma Research, INTI International University, Nilai 71800, Malaysia.

Color versions of one or more of the figures in this paper are available online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TPS.2018.2854920

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.
massive charging system) takes 10 s to be fully charged. Furthermore, the pulsed power switches that can be operated at a few hertz with a peak current of about 400 kA in each discharge are not available. Besides, the capacitor bank for MJ device costs about U.S. $480 000. Consequently, practical nuclear activity is constrained by limitations imposed by operating the device at higher repetition rate and energies. It follows that other methods need to be investigated to produce medical grade radioactivity in a PF device.

II. EXPERIMENTAL DATA AND OPTIMIZATION

Experimental data on the nuclear activity production in the PF (Table I) have been measured either directly or by using deuteron spectra. ^{13}N radioactivity A, per shot, as a function of PF discharge energy E fitted with power function

$$A(k\text{Bq}) = E^{1.1519}\text{(kJ)}$$

(1)
is shown in Fig. 1. NX2 serves as a reference PF since accurate measurements on both direct and spectral activities have been reported on this device. It is a high repetition rate, up to 16 Hz [8], small Mather-type PF with 28-μF capacitor bank coupled to the PF electrodes through four pseudospark switches. The total system inductance is 26 nH, which is the optimum operating inductance of the device, providing the highest pinch current of 200 kA. The NX2 is operated with 4–14 mbar deuterium gas and 10–12-kV charging voltage. The plasma column is 2 mm in diameter and 10 mm in length, pinch duration of 70 ns, and temperature 0.5 keV. Direct measurement on NX2 gives 5.2 KBq [4] as an average radioactivity and at the best shot rises to 40 KBq [3]. The radioactivity calculated from the best deuteron spectrum shows 37 KBq for NX2.

The experimental data of Table I were optimized against NX2 radioactivity (Fig. 2) and fitted with power function of the form

$$A(k\text{Bq}) = E^{1.4729}\text{(kJ)}.$$

(2)

Nuclear activity estimation by the Lee model code [9] for some PF devices gives

$$A(k\text{Bq}) = E^{1.04}\text{(kJ)}$$

(3)

which underestimates the real experimental data. For the most energetic PF device currently in operation, 1 MJ, the radioactivity predicted based on (1)–(3) is shown in Table II.

These estimations clearly show that the PF is far from being a suitable alternative to produce practical radioactivity. The best PF performance for maximum radioactivity is achieved in optimum pressure and voltage (operational features), and optimum inductance (design feature that increases the pinch current [10]). NX2 is the only device, among all presented in Table I, which has been designed to be operated at optimum inductance so that the highest radioactivity-to-energy ratio of $A/E \geq 3$ is obtained. It should also be pointed out that the experimental results could be fairly well compared in an identical context if the design and operational features are optimized for a PF.

III. MEDICAL GRADE NUCLEAR ACTIVITY

The maximum specific activity (SA) (Table III) for the common short-lived radionuclide (SLR) was estimated by:

$$SA = N_A \lambda (\text{Bq/mol}),$$

where λ is the decay constant and N_A is Avogadro’s number. Table IV presents the deuteron-induced nuclear reaction in ^{12}C, ^{10}B, ^{14}N, and ^{20}Ne targets, corresponding Q-values (energy released) and threshold energy E_{th} (minimum energy of deuterons), and the minimum and maximum cross sections.

Substantial SA belongs to ^{15}O and the succeeding radio nuclide is ^{13}N. Unlike that of solid target, experimental data on the gas target shows higher ^{15}O radioactivity compared to ^{13}N. The induced radioactivity in the solid target is
TABLE III
SA OF SLRS

<table>
<thead>
<tr>
<th>Radionuclide</th>
<th>λ(s⁻¹)</th>
<th>SA(C/μmol)</th>
<th>Radiation</th>
</tr>
</thead>
<tbody>
<tr>
<td>¹⁸F</td>
<td>1.05 × 10⁻⁴</td>
<td>1710</td>
<td>97% β⁺ 511 keV γ-ray</td>
</tr>
<tr>
<td>¹²C</td>
<td>5.66 × 10⁻⁴</td>
<td>2205</td>
<td>100% β⁺ 511 keV γ-ray</td>
</tr>
<tr>
<td>¹³N</td>
<td>1.16 × 10⁻³</td>
<td>18853</td>
<td>100% β⁺ 511 keV γ-ray</td>
</tr>
<tr>
<td>¹⁵O</td>
<td>5.69 × 10⁻³</td>
<td>92499</td>
<td>100% β⁺ 511 keV γ-ray</td>
</tr>
</tbody>
</table>

TABLE IV
REACTION CROSS SECTION, Q-VALUE, AND Threshold ENERGY FOR SLR PRODUCTION

<table>
<thead>
<tr>
<th>Nuclear Reaction</th>
<th>Q-value (MeV)</th>
<th>Eₚₑ(eV)</th>
<th>Deuterium Energy and cross section (minimum and maximum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>¹²C(d,n)¹³N</td>
<td>-0.280</td>
<td>0.327</td>
<td>0.6 MeV: 10 mb, 1.4 MeV: 130 mb</td>
</tr>
<tr>
<td>¹⁰B(d,n)¹⁴C</td>
<td>6.46</td>
<td>-7.76</td>
<td>4 MeV: 30 mb, 7 MeV: 180 mb</td>
</tr>
<tr>
<td>¹⁴N(d,n)¹⁵O</td>
<td>5.07</td>
<td>-5.80</td>
<td>1.0 MeV: 10 mb, 4.0 MeV: 210 mb</td>
</tr>
<tr>
<td>²⁰Ne(d,n)¹⁸F</td>
<td>2.79</td>
<td>-3.077</td>
<td>1.5 MeV: 10 mb, 6.0 MeV: 220 mb</td>
</tr>
</tbody>
</table>

computed from

\[A = \frac{\lambda Y}{\varepsilon(1 - e^{-\lambda t_{cn}})}e^{-\lambda t_{tr}} \]

where \(t_{cn} \) is the counting time, \(t_{tr} \) is the transfer time (time between end of the activation and beginning of the count), \(\varepsilon \) is the efficiency of the detector, and \(Y \) is the reaction yield: \(Y = N_dY_{tt} \) in which \(N_d \) is the total number of high-energy deuterons and \(Y_{tt} \) is the tick target yield estimated to be \(2.2 \times 10^{-10} \) [11].

The bombardment time, set to be 600 s instead of being 60 s, improves the nuclear activity from 7% (5.2 kBq) to 50% (38 kBq) with the maximum feasible activity of about 77.5 kBq. Graphite activation by deuterons is the most favorable reaction since the minimum energy required is 0.6 MeV and the next reaction is \(^{14}\text{N} \) activation to produce \(^{15}\text{O} \). In NX2, both \(^{10}\text{B} \) and \(^{14}\text{N} \) in a boron nitride solid target have been activated which reveals very high-energy deuterons of 4 MeV are exceptionally produced in a small 2-kJ PF device [6].

Reaction yield is proportional to the deuteron flux and, in a PF, flux turns out to be related to the pinch current [12] thus the radioactivity is

\[A = K I_p^2 \gamma_{tt}(1 - e^{-\lambda I_p}) \]

where \(K \) is a constant reflecting the PF characteristics and \(I_p \) is the pinch current. Higher pinch current significantly increases the radioactivity. Operating the PF at lowest possible inductance results in a greater pinch current.

The important parameters to be taken into account to maximize the radioactivity are as follows.

1) \textit{Pinch Current}: Saturates at certain discharge energies [13].

2) \textit{Deuteron Energy}: The spectrum configuration is identical for all PF devices, and drops exponentially at higher energies by a power of 7–9 [14].

3) \textit{Bombardment Time}: Ultimately improves the radioactivity by one order of magnitude.

4) \textit{Target Number Density}: For solid target is, typically, \(10^{23} \text{ cm}^{-3} \), but for plasma domain (gas target) is \(10^{21} \text{ cm}^{-3} \), and for the pinch is \(10^{19} \text{ cm}^{-3} \).

5) \textit{Cross Section}: Increases with energy. Certain limitations exist in all five parameters above for maximum radioactivity production. However, it is shown that is possible to maximize the radioactivity to substitute the current bulky and expensive cyclotrons by a small, cheap, and simple PF device.
A set of magnetic lens with a particular configuration (Fig. 3) enables higher projectile-target collisions to enhance the radioactivity. The magnetic force within the PF device was examined by solving the equation of motion of a charged particle in a magnetic field. Strength of the lens depends upon the coil configuration and current. The charged particles are focused at a point along the z-axis. The focal length depends on the coil geometry and number of turns, the accelerating voltage, and the coil current. Energy of the charged particles increases the focal length since higher velocity reduces the time experiencing the magnetic field force. However, as the current increases so do the magnetic field strength, the charged particle gyrates in tighter paths bringing the focal length closer. This allows the focusing onto a surface in addition to adjusting the magnification.

The magnetic lens converges most of the ions >90% and focuses them on a small area on the target with a circular pattern of 2 cm in radius. The magnetic flux density of lens (Fig. 4) shows that the field on the anode head (−30 cm) is too small to influence the pinch formation and ion acceleration. The magnetic coil specifications are in Table V. COMSOL was used to design the magnetic lens and simulate the ion trajectory and localization on the target. Fast ions undergo interaction with neutral gas in the chamber; hence, the related parameters, such as elastic and inelastic scattering cross section, neutralization, and some other parameters, are considered for ion energy of 10 eV–10 MeV. Fig. 5 displays the ion trajectory and cross-sectional view of localized ion beam on the target.

The practical radioactivity for nuclear imaging, i.e., positron emission tomography, is 0.3–0.7 GBq. The maximum radioactivity, using magnetic lens, at 1- and 16-Hz repetition rate of PF discharges (Table VI) verifies that low-energy PF devices, such as NX2, PF10, and NX3, are potentially capable of generating medical grade activity. The radioactivity rises rapidly at lower PF energies and slows down at higher energies as shown in Fig. 6.
TABLE VI
MAGNETICALLY DRIVEN MAXIMUM RADIOACTIVITY

<table>
<thead>
<tr>
<th>PF Device*</th>
<th>Discharge Energy (kJ)*</th>
<th>Ion No. (10^15)*</th>
<th>Ion No. Entered Magnetic Lens (10^12)</th>
<th>Radioactivity (kBq) one shot</th>
<th>Radioactivity (MBq) 16 Hz, 600 s</th>
</tr>
</thead>
<tbody>
<tr>
<td>PF1000</td>
<td>486</td>
<td>6100</td>
<td>168.8</td>
<td>2480</td>
<td>17320</td>
</tr>
<tr>
<td>Poseidon</td>
<td>281</td>
<td>3300</td>
<td>86.4</td>
<td>1440</td>
<td>10000</td>
</tr>
<tr>
<td>Texas</td>
<td>126</td>
<td>1700</td>
<td>53.6</td>
<td>708</td>
<td>5000</td>
</tr>
<tr>
<td>PF115kJ</td>
<td>115.2</td>
<td>1771</td>
<td>56.58</td>
<td>760</td>
<td>5240</td>
</tr>
<tr>
<td>DPF78</td>
<td>31</td>
<td>390</td>
<td>12.6</td>
<td>180</td>
<td>1204</td>
</tr>
<tr>
<td>NX3</td>
<td>20</td>
<td>325</td>
<td>10.46</td>
<td>160</td>
<td>1000</td>
</tr>
<tr>
<td>PF11.5kJ</td>
<td>11.5</td>
<td>152</td>
<td>4.86</td>
<td>72</td>
<td>589</td>
</tr>
<tr>
<td>PF10kJ</td>
<td>10.6</td>
<td>104</td>
<td>3.29</td>
<td>48</td>
<td>334</td>
</tr>
<tr>
<td>PF5.4kJ</td>
<td>5.4</td>
<td>56</td>
<td>1.79</td>
<td>32</td>
<td>151</td>
</tr>
<tr>
<td>PF II</td>
<td>4.7</td>
<td>34.6</td>
<td>1.1</td>
<td>14.4</td>
<td>100</td>
</tr>
<tr>
<td>INTI</td>
<td>3.4</td>
<td>19</td>
<td>0.58</td>
<td>8.4</td>
<td>60</td>
</tr>
<tr>
<td>NX2</td>
<td>2.7</td>
<td>110</td>
<td>3.52</td>
<td>43.2</td>
<td>308</td>
</tr>
<tr>
<td>PF2.2</td>
<td>2.22</td>
<td>17.63</td>
<td>0.562</td>
<td>10</td>
<td>52</td>
</tr>
<tr>
<td>ICPT</td>
<td>2.16</td>
<td>15.4</td>
<td>0.482</td>
<td>8.8</td>
<td>48</td>
</tr>
<tr>
<td>PS5M</td>
<td>2</td>
<td>37</td>
<td>1.02</td>
<td>7.2</td>
<td>39</td>
</tr>
<tr>
<td>PF400J</td>
<td>0.4</td>
<td>5.9</td>
<td>0.12</td>
<td>2.4</td>
<td>16</td>
</tr>
</tbody>
</table>

*Data from Ref [9].

Fig. 6. Enhanced radioactivity at one shot and 16 Hz/600 s.

IV. CONCLUSION

The experimental data on the radioactivity production in the PF show an empirical scaling of the form $E^{1.159}$. NX2 holds the highest radioactivity-to-energy ratio, and improves the scaling to $E^{1.4729}$. A set of magnetic lens intensifies the ion beam on a small area on the target and significantly promotes the radioactivity. Magnetically driven radioactivity of the NX2 is about 0.31 GBq. This confirms that the low-energy PF devices are the best alternatives to the cyclotrons for radionuclide production.

REFERENCES

Authors’ photographs and biographies not available at the time of publication.