A STUDY ON MICROBIAL FUEL CELL (MFC) TO POWER UNDERWATER MONITORING DEVICE

By

SARAVANAN A/L RAVICHANTHIRAN
I14005634

FINAL PROJECT REPORT

Submitted to
the Faculty of Engineering and Quantity Surveying
in Partial Fulfillment of the Requirements
for the Degree of

BACHELOR OF ENGINEERING (HONS)
in
MECHANICAL ENGINEERING

At

INTI INTERNATIONAL UNIVERSITY
Persiaran Perdana BBN, Putra Nilai, 71800 Nilai
Negeri Sembilan, Malaysia

JANUARY 2018

© Copyright 2018
by
SARAVANAN A/L RAVICHANTHIRAN
All Rights Reserved
APPROVAL

A STUDY ON MICROBIAL FUEL CELL (MFC) TO POWER UNDERWATER MONITORING DEVICE

by

saravan a/l ravichanthiran

A project dissertation submitted to the Faculty of Engineering and Quantity Surveying INTI INTERNATIONAL UNIVERSITY in partial fulfilment of the requirement for the Bachelor of Engineering (Hons) in Mechanical Engineering

Approved:

DR. MUHAMMAD IZZAT NOR MA’AROF
Project Supervisor

INTI INTERNATIONAL UNIVERSITY
NILAI, NEGERI SEMBILAN

April 2018
DECLARATION

I, the undersigned, hereby declare that this report is my own independent work except as specified in the references and acknowledgements. I have not committed plagiarism in the accomplishment of this work, nor have I falsified and/or invented the data in my work. I am aware of the University regulations on Plagiarism. I accept the academic penalties that may be imposed for any violation.

Signature ...

Name ... Saravanan A/L Ravichandiran

Matrix No. ... 114005634

Date ... 28 May 2018
ABSTRACT

A “Microbial Fuel Cell” also known as biological fuel cell impersonates the way bacteria behave in nature to generate current. A Microbial Fuel Cell converts the chemical energy through a catalytic reaction to electrical energy. A Microbial Fuel Cell consists of two different compartments namely an anode and cathode respectively. This project is done by using two compartments which are divided by a cation specific membrane which contains positively charged ions. In the anode, protons and electrons are produced as a result if the fuel oxidization by microorganisms. While the protons are moved to the anode via the membrane, the electrons are then moved to the cathode via an external circuit. In the cathode, both protons and electrons are used up to make a combination with oxygen in order to produce water. Malaysia has access to various renewable resources such as wind, ocean, biomass, solar and small hydro. Malaysia therefore has the potential to achieve sustainable energy. Several energy policies have been put in place to promote energy efficiency, quality of service and environmental safeguarding. However, there is still no proper collaboration between the government and the general public regarding the use of renewable resources at a faster rate. Therefore, the objective of this project is to study and analyse the requirements of a Microbial Fuel Cell to generate electricity, design and implement a Microbial Fuel Cell, validate and quantify the amount of bio-waste required to generate electricity and to validate and generate electricity using the Microbial Fuel Cell. Therefore, a system was fabricated following a proper methodology and several experiments was tested our using different kinds of electrodes and resistor. These experiments are mainly to determine the voltages and power density to do further analysis and discussion. The system must able to power an underwater monitoring device that was replace with an LED as less voltage needed to power up those sensors. There is limitation associated to Microbial Fuel Cell which is their low power density. To have a better understanding of the different parameters and to optimize the production of electricity, more in depth studies are required. The operating and production costs can be reduced while the power generation can be increased with ongoing improvements. Before Biological Fuel Cells can actually be produced and commercialized, a huge amount of improvement is required.
ACKNOWLEDGEMENTS

I would like to thank and express my gratitude to my supervisor, Dr. Muhammad Izzat Nor Ma’rof as he has given me support and advices regarding the project since the beginning. Other than that, I would like to show my appreciation to my fellow friend Rishan Murali who was there for me and providing me his place to do my project whether it is indoor and outdoor and slept late due to my data collection at night. Both of us did our project since the 1st day of Final Year Project in stage 1 and he did provide me a lot of good advices throughout the FYP period. Then, I would like to thank to our respected examiner which are Dr. Amir and Dr. Lim as they been listening to my presentation and able to support with my own project. Finally, I would like to thank my friend and family who are been my helping hand to be with me from my project. I would like to take opportunity to say that this project in learning about Microbial Fuel Cell is definitely a game changing experience for me. As we are living in this era full of renewable energy such as solar energy, wind energy and solar energy, there are many more renewable energies can be found throughout years ahead where technologies are transitioning fast and vastly in this world. Gaining the fundamental and those skills that acquired throughout the project is a blessing for me as it would be beneficial in my future undertaking in this engineering field.
DEDICATION

Author would like to dedicate this project to the people that help me get this far, without them author wouldn’t be able to complete this project nor make this project happen. Firstly, author wants to dedicate this projects to author’s friends that provided author with the recourse and the transportation to obtain materials to compose this project. Secondly, author wants to dedicate this project to author’s own family whom have supported author throughout the journey in building and creating this project, without their help author wouldn’t have been able to have such a great opportunity to develop this assignment. Lastly, author would like to dedicate this project to author’s own life partner whom have supported me mentally and physically motivating author to not give up but to keep moving forward to complete this project.
Table of content

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>i</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>3</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>4</td>
</tr>
<tr>
<td>CHAPTER 1</td>
<td>14</td>
</tr>
<tr>
<td>1.1 The energy situation in the world</td>
<td>14</td>
</tr>
<tr>
<td>1.2 The energy depletion situation in Kenya, Japan & Malaysia</td>
<td>15</td>
</tr>
<tr>
<td>1.2.1 The energy depletion situation in Kenya</td>
<td>15</td>
</tr>
<tr>
<td>1.2.2 The energy depletion situation in Japan</td>
<td>16</td>
</tr>
<tr>
<td>1.2.3 The energy depletion situation in Malaysia</td>
<td>18</td>
</tr>
<tr>
<td>1.3 Biomass</td>
<td>19</td>
</tr>
<tr>
<td>1.3.1 Kenya</td>
<td>19</td>
</tr>
<tr>
<td>1.3.2 Malaysia</td>
<td>20</td>
</tr>
<tr>
<td>1.4 Electricity</td>
<td>21</td>
</tr>
<tr>
<td>1.4.1 Kenya</td>
<td>21</td>
</tr>
<tr>
<td>1.4.2 Japan</td>
<td>21</td>
</tr>
<tr>
<td>1.4.3 Malaysia</td>
<td>22</td>
</tr>
<tr>
<td>1.5 Depletion of non-renewable sources in Kenya, Japan</td>
<td>24</td>
</tr>
<tr>
<td>1.5.1 Petroleum products in Kenya</td>
<td>24</td>
</tr>
<tr>
<td>1.5.2 Crude oil in Japan</td>
<td>25</td>
</tr>
<tr>
<td>1.5.3 Crude oil in Malaysia</td>
<td>26</td>
</tr>
<tr>
<td>1.6 The consumption and the demand of energy in Kenya, Japan & Malaysia</td>
<td>27</td>
</tr>
<tr>
<td>1.7 Objectives</td>
<td>29</td>
</tr>
<tr>
<td>1.8 Problem Statement</td>
<td>30</td>
</tr>
<tr>
<td>CHAPTER 2</td>
<td>31</td>
</tr>
<tr>
<td>LITERATURE REVIEWS</td>
<td>31</td>
</tr>
<tr>
<td>2.1 Background research and study</td>
<td>31</td>
</tr>
<tr>
<td>2.2 Introduction to MFC</td>
<td>32</td>
</tr>
<tr>
<td>2.3 Background history of Microbial Fuel cell</td>
<td>33</td>
</tr>
<tr>
<td>2.4 Working operation of Microbial Fuel Cell</td>
<td>35</td>
</tr>
<tr>
<td>2.4.1 How energy generated in Microbial Fuel Cell</td>
<td>36</td>
</tr>
<tr>
<td>2.4.2 Power Generation and its formula</td>
<td>37</td>
</tr>
</tbody>
</table>
2.4.3 Electromotive Force (EMF) .. 38
2.4.1 The Coulombic efficiency .. 40
2.5 Types of Microbial Fuel Cells ... 40
 2.5.1 Mediator Microbial Fuel Cell .. 41
 2.5.2 Mediator-less Microbial Fuel Cells 42
2.6 Other classifications of Microbial Fuel Cell 43
 2.6.1 Two-compartment MFC systems 43
 2.6.2 Single-compartment MFC systems 44
 2.6.3 Stacked Microbial Fuel Cell .. 44
 2.6.4 Electrolysis Cell of Microbial Fuel Cell 45
 2.6.5 Microbial Fuel Cell using Soil 45
2.7 Microbial Fuel Cell Operating Procedures 45
 2.7.1 Parts of Microbial Fuel Cell ... 46
 2.7.2 The electron transport chain in a Microbial Fuel Cell 48
 2.7.3 Optimum conditions required for the Microbial Fuel Cell to function 49
 2.7.4 Optimal temperature of Microbial Fuel Cell Operation 50
 2.7.5 Concentration of PH and Substrate in Microbial Fuel Cell . 50
 2.7.6 Anodic Chamber suitable condition for operation 50
 2.7.7 Cathodic Chamber suitable condition for operation 51
 2.7.8 Maintenance of Microbial Fuel Cell 52
2.8 Applications for Microbial Fuel Cell 52
 2.8.1 Waste Water Treatment ... 52
 2.8.2 Commercial Water Treatment 53
 2.8.3 Hydrogen Generation .. 53
2.9 Microbial Fuel Cells vs Traditional Fuel Cells vs Conventional Fuel Cells 53
2.10 Research Gaps .. 54
CHAPTER 3 ... 55
PROPOSED METHODOLOGY .. 55
3.1 Introduction .. 55
3.2 Research of Methodology ... 55
3.3 MFC experiment System (STAGE 1) 56
 3.3.1 To validate and quantify the amount of bio-waste for production of electricity 56
 3.3.1.1 Experimental Observations 56
3.4 MFC experiment System (STAGE 2) 57
3.4.1 To design a microbial fuel cell ... 57
 3.4.1.1 Software used for designing process .. 57
3.4.2 To validate and generate electricity using the cell .. 57
 3.4.2.1 Analysis of the data obtained ... 57
 3.4.2.2 MFC Energy Balance .. 58
3.5 Material Required for MFC .. 58
3.6 The Microbial Fuel Cell Designs ... 59
 3.6.1 Project requirement and Criteria .. 59
 3.6.2 Anode and Cathode compartments .. 60
 3.6.2.1 Considerations of the MFC compartments .. 60
 3.6.2.2 Research in different type of MFC compartments 60
 3.6.3 The Feeding System .. 62
 3.6.3.1 Considerations of the MFC feeding system 62
 3.6.3.2 Research in different type of feeding system 62
 3.6.2.3 Research in different type of MFC compartments 63
 3.6.2.2 Implementation of the feeding system .. 63
 3.6.4 Electrodes ... 65
 3.6.5 The MFC's Ion Exchange Membrane .. 67
3.7 Procedure ... 68
 3.7.1 Anode and Cathode Compartments .. 69
 3.7.2 The electrodes for anode and cathode ... 70
 3.7.3 The salt bridge .. 71
 3.7.4 Assembling the Microbial Fuel Cell .. 72
 3.7.5 To test the Microbial Fuel cell .. 73
 3.7.6 Standard procedure operation ... 74
 3.7.7 Design considerations and alternatives of the system 74
3.8 Data Collection and Analysis .. 75
CHAPTER 4 .. 76
RESULTS AND DISCUSSION .. 76
 4.1 Expected results .. 76
 4.2 Results and Observation of Fuel Cell Using Graphite electrode 77
 4.3 Results and Observation of Fuel Cell Using Aluminium Mesh 88
 4.4 Analysis and Discussion ... 99
 4.4.1 Graphite electrode analysis and discussion .. 99
4.4.2 Aluminium Mesh electrode analysis and discussion .. 106
4.5 Microbial Fuel Cell Energy Balance for Both Electrodes 112
4.6 Powering the LED using Microbial Fuel Cell .. 114
CHAPTER 5 ... 117
CONCLUSION .. 117
 5.1 Project Achievements .. 117
 5.2 Sustainability .. 117
 5.3 Cost Analysis .. 118
 5.4 Microbial Fuel Cell Application based on this experiment 119
 5.5 Advantages of using Microbial Fuel Cell ... 120
 5.6 Limitation ... 120
 5.7 Recommendation ... 121
 5.8 Conclusion .. 121
REFERENCE ... 123
APPENDIX A: GANTT CHART ... 125
APPENDIX B: Data collection for Graphite electrode experiment 128
APPENDIX C: Data Collection of Aluminium Mesh Electrode experiment 131
APPENDIX D: Standard Operation Procedure .. 134
APPENDIX E: Research Gap ... 137
List of Figure

Figure 1: The world's total energy sources in the form of pie chart ... 14
Figure 2: Kenya's total energy sources in the form of pie chart ... 16
Figure 3: Japan's total energy sources in the form of pie chart .. 17
Figure 4: The Japan's electricity generation by using numerous sources of energy 22
Figure 5: The energy demand in Malaysia from 2000 - 2012 ... 23
Figure 6: Kenya's total energy sources supply per source in the form of pie chart 25
Figure 7: The crude oil imports by japan to various countries ... 26
Figure 8: The mediator Microbial Fuel Cell .. 41
Figure 9: The two compartment Microbial Fuel Cell system ... 43
Figure 10: The single-compartment MFC systems ... 44
Figure 11: The stacked Microbial Fuel Cell .. 44
Figure 12: The Schematic diagram of Microbial Fuel Cell (MFC) .. 47
Figure 13: The electron transfer chain in Microbial Fuel Cell ... 48
Figure 14: Research Methodology Flow Diagram ... 55
Figure 15: The schematic diagram of the feeding system ... 64
Figure 16: Materials assembled and bought for the experiment .. 68
Figure 17: The container and the lid was drilled in certain dimension ... 69
Figure 18: The procedure for anode and cathode for both compartment with multimeter 70
Figure 19: The procedure to make the salt bridge with agar-agar ... 71
Figure 20: The final fabrication process of Microbial Fuel Cell completed 72
Figure 21: The process to test the Microbial Fuel Cell ... 73
Figure 22: The Standard Operation Procedure of the Microbial Fuel Cell project 74
Figure 23: The flow diagram of the data & analysis process ... 75
Figure 24: The graph of open circuit voltage against 10 days period for Graphite electrode 99
Figure 25: The graph of voltage against current with various resistor for 10 days period for Graphite electrode ... 101
Figure 26: The formation of biofilm .. 102
Figure 27: The Graph of Power against 10 days period for Graphite electrode 103
Figure 28: The graph of power against 10 days period of time together with polynomial equations for Graphite electrode ... 104
Figure 29: The graph of open circuit voltage against 10 days period for Aluminium mesh electrode ... 106
Figure 30: The graph of voltage against current with various resistor for 10 days period for Aluminium mesh electrode ... 108
Figure 31: The Graph of Power against 10 days period for Aluminium mesh electrode 109
Figure 32: The graph of power against 10 days period of time together with polynomial equations for Aluminium mesh .. 110
Figure 33: The Microbial Fuel cell connected with LED ... 114
Figure 34: The underwater temperature sensor and specifications ... 115
LIST OF TABLES

Table 1: The sources of energy in Kenya (Republic of Kenya, 2017) .. 15
Table 2: The sources of energy in Japan'I(EIA, 2016) .. 17
Table 3: Malaysia’s potential biomass energy in power generation (Energy Commission, 2016) 20
Table 4: The sources of energy in Kenya (Ministry of Energy, economic survey 2017) 24
Table 5: Reserves and production of unrefined oil in Malaysia (EIA, Malaysia international energy data and analysis 2016) ... 27
Table 6: Table of materials required for the feeding system ... 64
Table 7: Data collection of an open circuit system for graphite electrode .. 77
Table 8: Data collection of Voltages using 16K Ohms resistor for graphite electrode 79
Table 9: The data collection of Currents for 16K Ohms resistor for graphite electrode 79
Table 10: The results for Power, Current Density and Power Density for 16k Ohms resistor for graphite electrode ... 80
Table 11: Data collection of Voltages using 5K Ohms resistor for graphite electrode 80
Table 12: The data collection of Currents for 5K Ohms resistor for graphite electrode 81
Table 13: The results for Power, Current Density and Power Density for 5k Ohms resistor for graphite electrode ... 81
Table 14: Data collection of Voltages using 2.5K Ohms resistor for graphite electrode 82
Table 15: The data collection of Currents for 2.5K Ohms resistor for graphite electrode 82
Table 16: The results for Power, Current Density and Power Density for 2.5k Ohms resistor for graphite electrode ... 83
Table 17: Data collection of Voltages using 1K Ohms resistor for graphite electrode 83
Table 18: The data collection of Currents for 1K Ohms resistor for graphite electrode 84
Table 19: The results for Power, Current Density and Power Density for 1k Ohms resistor for graphite electrode ... 84
Table 20: Data collection of Voltages using 100 Ohms resistor for graphite electrode 85
Table 21: The data collection of Currents for 100 Ohms resistor for graphite electrode 85
Table 22: The results for Power, Current Density and Power Density for 100 Ohms resistor for graphite electrode ... 86
Table 23: The trends of power for each resistor for a period of 10 days for graphite electrode 86
Table 24: The powers on the 1st day, 5th day and 10th day using those 5 different resistors for graphite electrode ... 87
Table 25: Data collection of an open circuit system for Aluminium mesh .. 88
Table 26: Data collection of Voltages using 16K Ohms resistor for Aluminium mesh 90
Table 27: The data collection of Currents for 16K Ohms resistor for Aluminium mesh 90
Table 28: The results for Power, Current Density and Power Density for 16k Ohms resistor for Aluminium mesh ... 91
Table 29: Data collection of Voltages using 5K Ohms resistor for Aluminium mesh 91
Table 30: The data collection of Currents for 5K Ohms resistor for Aluminium mesh 92
Table 31: The results for Power, Current Density and Power Density for 5k Ohms resistor for Aluminium mesh ... 92
Table 32: Data collection of Voltages using 2.5K Ohms resistor for Aluminium mesh 93
Table 33: The data collection of Currents for 2.5K Ohms resistor for Aluminium mesh...........93
Table 34: The results for Power, Current Density and Power Density for 2.5k Ohms resistor for Aluminium mesh ...94
Table 35: Data collection of Voltages using 1K Ohms resistor for Aluminium mesh94
Table 36: The data collection of Currents for 1K Ohms resistor for Aluminium mesh95
Table 37: The results for Power, Current Density and Power Density for 1k Ohms resistor for Aluminium mesh ...95
Table 38: Data collection of Voltages using 100 Ohms resistor for Aluminium mesh96
Table 39: The data collection of Currents for 100 Ohms resistor for Aluminium mesh96
Table 40: The results for Power, Current Density and Power Density for 100 Ohms resistor for Aluminium mesh ...97
Table 41: The trends of power for each resistor for a period of 10 days for Aluminium mesh 98
Table 42: The powers on the 1st day, 5th day and 10th day using those 5 different resistors for Aluminium mesh ...98
Table 43: The period for electron to stop transferring for graphite electrode105
Table 44: The period for electron to stop transferring for Aluminium Mesh electrode111
Table 45: The cost analysis for the experiment ...118
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MFC</td>
<td>Microbial Fuel Cell</td>
</tr>
<tr>
<td>CEM</td>
<td>Cation Exchange Membrane</td>
</tr>
<tr>
<td>PEM</td>
<td>Proton exchange membrane</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine Triphosphate</td>
</tr>
<tr>
<td>NADH</td>
<td>Nicotinamide Adenine Dinucleotide</td>
</tr>
<tr>
<td>EMF</td>
<td>Electromotive Force</td>
</tr>
<tr>
<td>OVC</td>
<td>Open Circuit Voltage</td>
</tr>
<tr>
<td>COD</td>
<td>Chemical Oxygen Demand</td>
</tr>
<tr>
<td>DO</td>
<td>Dissolved Oxygen</td>
</tr>
<tr>
<td>ERC</td>
<td>Energy Regulation Commission</td>
</tr>
<tr>
<td>PH</td>
<td>Hydrogen potential</td>
</tr>
<tr>
<td>NEMA</td>
<td>National Environment Management Authority</td>
</tr>
<tr>
<td>GOK</td>
<td>Government of Kenya</td>
</tr>
<tr>
<td>E.coli</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>V</td>
<td>Voltage</td>
</tr>
<tr>
<td>R</td>
<td>Resistance</td>
</tr>
<tr>
<td>I</td>
<td>Current</td>
</tr>
<tr>
<td>P</td>
<td>Power</td>
</tr>
<tr>
<td>A</td>
<td>Amps</td>
</tr>
<tr>
<td>W</td>
<td>Watts</td>
</tr>
<tr>
<td>ΔG^0</td>
<td>Gibbs free energy</td>
</tr>
<tr>
<td>F</td>
<td>Faraday's constant</td>
</tr>
<tr>
<td>n</td>
<td>Amount of electrons per reaction mole of the substrate</td>
</tr>
<tr>
<td>T</td>
<td>Absolute temperature</td>
</tr>
<tr>
<td>ΔE</td>
<td>Potential Difference</td>
</tr>
</tbody>
</table>