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ABSTRACT

This research presents the study of the seismic performance of deficient RC L-joints confined
with pre-tensioned steel straps. The main experimental result parameters investigated are the
load applied-drift ratio relationship; ductility; and energy{dissipatioq .eapacity. Besides, the
different corresponding modes of failure of the specimens were properly understood as well.
An extensive study was done to review other related journals which will help facilitate a more
comprehensive understanding for the outcomes of this res;:arch (in Chapter 2). As for this
research, 15 RC L-joint specimens with different volumetric ratio of confinement (control; 1
to 4 layers of steel strapé) were fabricated and tested under simulated seismic loadings
whereby uniaxial cyclic loadings were applied on the specimens’ beam tip and column top
face. The experimental findings may be summarized as follows: The highest percentage of
shear strength enhancer"r)ent is 40% as that shown by the specimens confined with two layers
of steel straps. It was also found that the specimens with high volumetric ratio of confinement
have lower rate of stiffness degradation. On the other hand, the highest average displacement
ductility factor enhancement (74%) was shown by the specimen group with three layers of
steel straps. The energy dissipation capacities of the specimens were found to steadily rise
with the increased in volumetric ratio of confinement; the optimum volumetric ratio of
confinement for maximum energy dissipation capacity (274%) is 4 layers. Besides, it was
shown that with the increased in volumetric ratio of confinement, the mode of failure
transitions from brittle-shear to flexural-shear; and then finally to ductile-flexural failure. In

general terms, as for the retrofitted RC joint specimens, the main governing parameters

behind their enhanced seismic performance are their ductility and energy dissipation capacity.
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