INTI INTERNATIONAL UNIVERSITY

FACULTY OF ENGINEERING AND QUANTITY SURVEYING

SEISMIC RETROFITTING OF
DEFICIENT RC BEAM-COLUMN JOINT REGIONS
USING PRE-TENSIONED STEEL STRAPS

KENNETH BOO BENG WEE
B.ENG (HONS) IN CIVIL ENGINEERING

PROJECT SUPERVISOR: LEE HOONG PIN

FINAL YEAR PROJECT

2018
SUPERVISOR'S DECLARATION

This project report entitled “Seismic Retrofitting Of Deficient RC Beam-Column Joint Regions Using Pre-tensioned Steel Straps” is prepared and submitted by Kenneth Boo Beng Wee, 114006681 as partial fulfilment of the requirement for Bachelor of Engineering (HONS) in Civil Engineering, INTI International University.

APPROVED BY:

Date: 4 May, 2018

LEE HOONG PIN
Faculty of Engineering and QS
INTI International University
71800 Nilai N. Sembilan
E: hoongpin.lee@newinti.edu.my
HP: +60129819649
STUDENT’S DECLARATION

I hereby declare that the final year project is based on my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at INTI INTERNATIONAL UNIVERSITY or other institutions.

Signature : ...
Student Name : Kenneth Boo Beng Wei
Student ID : I14000681
Date : 4 May 2018
ACKNOWLEDGMENT

First and foremost, I would like to express my sincere gratitude to my parents for their endless support and encouragement shown from the start of my final year project, all the way to its completion. Besides, I would like to specifically thank Mr. Lee Hoong Pin, my project supervisor, for the valuable knowledge he shared and for the great generosity demonstrated in allowing me to use the materials belonging to him. It would certainly be impossible to complete this project without his essential guidance. Last but not least, I would also like to thank these friends of mine: Kiew Jie Fu, Keshantran, Lee Wei Sheng, Ahmed Ihusan, and Hassan, for their kind assistance with the lab works. Given that the workload of this project is relatively huge, with the short amount of time provided, it would have been impossible to complete this project if it is not for their assistance.
ABSTRACT

This research presents the study of the seismic performance of deficient RC L-joints confined with pre-tensioned steel straps. The main experimental result parameters investigated are the load applied-drift ratio relationship; ductility; and energy dissipation capacity. Besides, the different corresponding modes of failure of the specimens were properly understood as well. An extensive study was done to review other related journals which will help facilitate a more comprehensive understanding for the outcomes of this research (in Chapter 2). As for this research, 15 RC L-joint specimens with different volumetric ratio of confinement (control; 1 to 4 layers of steel straps) were fabricated and tested under simulated seismic loadings whereby uniaxial cyclic loadings were applied on the specimens’ beam tip and column top face. The experimental findings may be summarized as follows: The highest percentage of shear strength enhancement is 40% as that shown by the specimens confined with two layers of steel straps. It was also found that the specimens with high volumetric ratio of confinement have lower rate of stiffness degradation. On the other hand, the highest average displacement ductility factor enhancement (74%) was shown by the specimen group with three layers of steel straps. The energy dissipation capacities of the specimens were found to steadily rise with the increased in volumetric ratio of confinement; the optimum volumetric ratio of confinement for maximum energy dissipation capacity (274%) is 4 layers. Besides, it was shown that with the increased in volumetric ratio of confinement, the mode of failure transitions from brittle-shear to flexural-shear; and then finally to ductile-flexural failure. In general terms, as for the retrofitted RC joint specimens, the main governing parameters behind their enhanced seismic performance are their ductility and energy dissipation capacity.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii - iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vi - ix</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>x - xviii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xix - xx</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 General | 1 - 2 |
1.2 Statement of the Problem | 3 |
1.3 Research Objectives | 4 |
1.4 Scope of Study | 4 |
1.5 Significance of Study | 5 |

2 LITERATURE REVIEW

2.1 Introduction | 6 - 7 |
2.1.1 Seismic retrofitting background | 7 - 8 |
2.1.2 Common challenges encountered | 9 - 10 |
2.2 Retrofitting classification | 10 - 11 |
2.3 Seismic demand for RC beam-column joint regions | 11 - 12 |
2.3.1 Common types of RC beam-column joints 12 - 13
2.3.2 The different types of forces experience by beam-column joints 13 - 16
2.3.3 Seismic behaviour of deficient RC beam-column joints 16 - 19
2.4 Common types of retrofitting techniques for RC beam-column joints 19
2.4.1 Steel Jacketing & Haunch Element by Dang and Dinh (2017) 20 - 24
2.4.2 Fiber Reinforced Polymers (FRP) by Kabir and Hejabi (2015); Ghobarah and Said (2001) 25 - 31
2.4.3 Pre-stressed steel straps by Moghaddam and Samadi (2009); Lopez et al. (2012) 31 - 43
2.4.4 General conclusion on the different retrofitting techniques discussed 44 - 45
2.5 Conclusion 46 - 47

3 METHODOLOGY 48

3.1 Introduction
3.2 Test specimen design 49
3.2.1 Frame modelling 49 - 50
3.2.2 Addition of load on structural model 51 - 54
3.2.3 Load combination & Structural analysis 55 - 56
3.2.4 Reinforced concrete design per BS8110 57 - 64
3.2.5 Test specimen geometry and detailing specification 64 - 66
3.3 Formwork 66 - 67
3.4 Reinforcement steel bars 68 - 69
3.5 Concrete 70
3.5.1 Concrete mix design 70 - 74
3.5.2 Casting of concrete 75 - 76
3.6 Pre-tensioned Steel Straps 77
3.6.1 Mechanism of pre-tensioned steel straps to the 77 - 78
joint specimens

3.6.2 Steel straps configuration and volumetric ratio of confinement

3.7 Experimental set-up, specimen loading configuration & data to be collected

3.8 Overall flow cart for the fabrication and testing of specimen

4 RESULTS AND DISCUSSION

4.1 Introduction

4.2 Concrete compressive strength

4.3 Analytical approaches employed in obtaining the experimental result parameters

4.3.1 Specimens’ shear strength and stiffness properties

4.3.2 Specimens’ displacement ductility factor

4.3.3 Specimens’ energy dissipation capacity

4.4 Control specimens’ observation and discussion

4.4.1 Load applied-drift ratio relationship

4.4.2 Cracking pattern and the mode of failure

4.5 Specimens confined with one layer of steel strap’s observation and discussion

4.5.1 Load applied-drift ratio relationship

4.5.2 Cracking pattern and the mode of failure

4.6 Specimens confined with two layers of steel straps’ observation and discussion

4.6.1 Load applied-drift ratio relationship

4.6.2 Cracking pattern and the mode of failure

4.7 Specimens confined with three layers of steel straps’ observation and discussion

4.7.1 Load applied-drift ratio relationship

4.7.2 Cracking pattern and the mode of failure

4.8 Specimens confined with four layers of steel straps’
observation and discussion

4.8.1 Load applied-drift ratio relationship 118-123
4.8.2 Cracking pattern and the mode of failure 123-124
4.9 Comparison 125
4.9.1 Shear strength & mode of failure and the load applied-drift ratio relationship 125-129
...4.9.2 Ductility and energy dissipation capacity 129-132

5 CONCLUSIONS AND RECOMMENDATIONS 133

5.1 Summary of study 133-134
5.2 Recommendations for future study 135

REFERENCES 136-138
LIST OF FIGURES

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1: Types of beam-column joints (Uma, 2015)</td>
<td>13</td>
</tr>
<tr>
<td>Figure 2.2: Forces and bending moments acting on an interior joint under different loading (Uma, 2015)</td>
<td>14</td>
</tr>
<tr>
<td>Figure 2.3: Forces and bending moments acting on exterior joints under different detailing (Uma, 2015)</td>
<td>14</td>
</tr>
<tr>
<td>Figure 2.4: Forces and bending moments acting on corner joints (Uma, 2015)</td>
<td>15</td>
</tr>
<tr>
<td>Figure 2.5: Some of the beam-column joint specimens (exterior) (Pampanin et al., 2002)</td>
<td>17</td>
</tr>
<tr>
<td>Figure 2.6: Exterior tee joints- variation in failure mechanism (Pampanin et al., 2002)</td>
<td>19</td>
</tr>
<tr>
<td>Figure 2.7: Specimens’ detailing and retrofitting configuration (Dang and Dinh, 2017)</td>
<td>21</td>
</tr>
<tr>
<td>Figure 2.8: Experimental set-up (Dang and Dinh, 2017)</td>
<td>22</td>
</tr>
<tr>
<td>Figure 2.9: Specimens’ lateral force versus drift ratio relationship (Dang and Dinh, 2017)</td>
<td>23</td>
</tr>
<tr>
<td>Figure 2.10: Strain profiles of top and & bottom rebars (Dang and Dinh, 2017)</td>
<td>24</td>
</tr>
</tbody>
</table>

X
Figure 2.11: Specimen detailing and FRP configuration (Kabir and Hejabi, 2015)

Figure 2.12: Lateral load versus displacement curves (Kabir and Hejabi, 2015)

Figure 2.13: Specimen’s detailing & FRP configuration (Ghobarah and Said, 2001)

Figure 2.14: Loading history (Ghobarah and Said, 2001)

Figure 2.15: Load versus displacement curve of the control specimen (left) and the repaired and FRP retrofitted specimen (right) (Ghobarah and Said, 2001)

Figure 2.16: Retrofitting to eliminate joint shear failure (Ghobarah and Said, 2001)

Figure 2.17: Confining action by FRP (Benzaid and Mesbah, 2014)

Figure 2.18: Effective confinement area for different concrete cross-sectional shape (Parvin and Brighton, 2014)

Figure 2.19: Specimen detailing & configuration (Moghaddam and Samadi, 2009)

Figure 2.20: Hysteretic lateral behaviour of specimens (C3–C6) (Moghaddam and Samadi, 2009)

Figure 2.21: Difference in strip strain values with respect to their height position in specimen C4 (Moghaddam and Samadi, 2009)

Figure 2.22: (a) plan view, and (b) geometry of building and members (Lopez et al., 2012)

Figure 2.23: Deficient beam-column joint detailing of (a) 1st floor (b) 2nd floor, in the X direction (Lopez et al., 2012)

Figure 2.24: Pre-stressed steel straps strengthening of (a) 1A-1 joint, & (b) 1A-2 joint (Lopez et al., 2012)

Figure 2.25: (a) 1A-2 joint during the Stage 2 test; and (b) 1A-1 joint after the removal of pre-stressed steel straps (Lopez et al., 2012)
Figure 3.1: Frame modelling with Autodesk Robot Structural Analysis Professional 2018

Figure 3.2: Assignation of material and section properties

Figure 3.3: Assignation of support/boundary condition

Figure 3.4: Characteristic dead load

Figure 3.5: Characteristic live load

Figure 3.6: Wind load case 1

Figure 3.7: Wind load case 2

Figure 3.8: Wind load case 3

Figure 3.9: Wind load case 4

Figure 3.10: Load case code combinations options- Autodesk Robot Structural Analysis 2018

Figure 3.11: Full list of load case combinations as per BS8110

Figure 3.12: Analysis type option & performance of structural analysis

Figure 3.13: RC design performed by Autodesk Robot Structural Analysis Professional 2018

Figure 3.14: RC design as per BS8110 and list of load cases included (for beam & column)

Figure 3.15: Example list of ultimate bending moments and axial forces for different load case combinations in column calculation

Figure 3.16: Column RC design calculation results

Figure 3.17: Column RC design calculation results

Figure 3.18: Column section drawing and detailing generated

Figure 3.19: Column 3D view
Figure 3.20: Beam RC design calculation results 61
Figure 3.21: Beam RC design calculation results 62
Figure 3.22: Beam RC design calculation results 63
Figure 3.23: Beam section drawing and detailing generated 63
Figure 3.24: Beam 3D view 64
Figure 3.25: Specimen geometry and detailing (units: mm) 65
Figure 3.26: Section A-A (units: mm) 65
Figure 3.27: Section B-B (units: mm) 65
Figure 3.28: Formwork plan (Top view) per specimen 66
Figure 3.29: Plywood material 67
Figure 3.30: Mechanical table wood cutter 67
Figure 3.31: Plywood pieces 67
Figure 3.32: Hammer & Nails 67
Figure 3.33: Assembling of formwork 67
Figure 3.34: Application of sealant 67
Figure 3.35: Cutting steel bars to appropriate length 68
Figure 3.36: Bending T12 steel bars 68
Figure 3.37: Bending R6 (links) 69
Figure 3.38: Mild steel wire & Cable tie (for tying bars) 69
Figure 3.39: Example of assembled rebars 69
Figure 3.40: Rebars in formwork 69
Figure 3.41: Spacer block (30mm height) 69
Figure 3.42: Specimens pre-concreting 69
Figure 3.43: Graph of compressive strength versus water/cement ratio 71
Figure 3.44: Approximated wet density of fully compacted concrete 72
Figure 3.45: Mass measurement for sample 1 (example) 73
Figure 3.46: Sieving sand samples 73
Figure 3.47: Recommended proportions of fine aggregate as per % passing 600μm sieve 74
Figure 3.48: (a) Portland Cement MS EN 197-1:2014 (Class 42.5) (b) Course aggregates (Max size = 20mm) (c) Fine aggregates/Sand 75
Figure 3.49: (a) Lubrication of formworks (b) Measuring out concrete constituents (c) Concrete mixing with a mixer 76
Figure 3.50: (a) Vibrating the concrete mix (b) 24 hours concrete curing outside the water tank 76
Figure 3.51: (a) Striking formwork (b) Concrete curing inside the water tank 76
Figure 3.52: Schematic diagram for the pre-tensioning of steel straps (Moghaddam and Samadi, 2009) 78
Figure 3.53: Pre-tensioning of steel straps/Installation of steel straps unto the specimen 78
Figure 3.54: Pre-tensioned steel straps configuration 79
Figure 3.55: Pre-tensioned steel straps retrofitted specimens 79
Figure 3.56: Control & retrofitted specimens 80
Figure 3.57: Experimental set-up schematic diagram 82
Figure 3.58: Experiment set-up 83

Figure 3.59: Experimental data compilation with the software “OpenShot” 83

Figure 3.60: Overall flow chart for the fabrication and testing of specimens (1) 84

Figure 3.61: Overall flow chart for the fabrication and testing of specimens (2) 85

Figure 4.1: Compressive test machine results for concrete cube sample 1, 2 & 3 88

Figure 4.2: (a) Concrete compression test (b) Concrete cube (post-compressive test) 88

Figure 4.3: Graph of “load versus drift ratio” for the 1st load cycle of specimen 1-C 91

Figure 4.4: Graph of “load versus drift ratio” for the 2nd load cycle of specimen 1-C 92

Figure 4.5: Graph of “load applied versus drift ratio” for specimen 1-C 94

Figure 4.6: Envelope curve for specimen 1-C 95

Figure 4.7: Graph of “load applied versus drift ratio” for specimen 2-C 95

Figure 4.8: Envelope curve for specimen 2-C 96

Figure 4.9: Graph of “load applied versus drift ratio” for specimen 3-C 96

Figure 4.10: Envelope curve for specimen 3-C 97

Figure 4.11: (a) Diagonal crack lines originating at the joint core of specimen 3-C (b) Specimen 3-C post-failure 98

Figure 4.12: Specimen 2-C post-failure 99

Figure 4.13: Graph of “load applied versus drift ratio” for specimen 4-C 101