COMPARISON OF YEAR ROUND ENERGY PERFORMANCE WITH DIFFERENT VENTILATION METHODS FOR ACMV SYSTEMS IN THE TROPICS

By

IVAN NG WEN XIONG
II10009322

FINAL PROJECT REPORT

Submitted to
the Faculty of Science, Technology, Engineering & Mathematics
in Partial Fulfilment of the Requirements
for the Degree of

BACHELOR OF ENGINEERING (HONS)
in
MECHANICAL ENGINEERING

At

INTI INTERNATIONAL UNIVERSITY
Persiaran Perdana BBN, Putra Nilai, 71800 Nilai
Negeri Sembilan, Malaysia

AUGUST 2014

© Copyright 2014
by
Ivan Ng Wen Xiong, 2014
All Rights Reserved
COMPARISON OF YEAR ROUND ENERGY PERFORMANCE WITH DIFFERENT VENTILATION METHODS FOR ACMV SYSTEMS IN THE TROPICS

by

Ivan Ng Wen Xiong

A project dissertation submitted to the Faculty of Science, Technology, Engineering & Mathematics INTI INTERNATIONAL UNIVERSITY in partial fulfilment of the requirement for the Bachelor of Engineering (Hons) in Mechanical Engineering

Approved: 

Ir. Dr. Yat Huang Yau
Project Supervisor

INTI INTERNATIONAL UNIVERSITY NILAI, NEGERI SEMBILAN

September 2014
DECLARATION

I, the undersigned, hereby declare that this report is my own independent work except as specified in the references and acknowledgements. I have not committed plagiarism in the accomplishment of this work, nor have I falsified and/or invented the data in my work. I am aware of the University regulations on Plagiarism. I accept the academic penalties that may be imposed for any violation.

Signature

Name  Ivan Ng Wen Xiong

Matrix No.  111009322

Date  27/05/2015
ABSTRACT

Ventilation methods in Malaysia has become obsolete, the usage of mixing ventilation is no longer feasible as it consumes too much energy. The usage of displacement ventilation only applies to large buildings. Stratum ventilation is the solution for minimising energy usage while being applicable to smaller buildings. Stratum ventilation is expected to have a significant impact on the HVAC community in Malaysia as it will phase out the mixing ventilation. China and Hong Kong have come to embrace the usage of stratum ventilation in their seasonal country. This study will compare the year round energy performance for different ventilation methods in a tropical country. The goal in mind is to evaluate the performance of the stratum ventilation in a tropical country. The grounds of INTI International University will be testing platform for this ventilation. A TRNSYS simulation studio was used to project the year round comparison based on data collected from a lecture theatre in the university. The simulation was done in the form of a lecturer’s office and lecture room with the usage of the Malaysia weather data to mimic tropical conditions. The studies suggest that stratum ventilation is feasible in a tropical country promising a minimum saving of 10.81% when compared to the displacement and mixing ventilations. The studies also found that the stratum ventilation uses only 3.54% excess energy when compared to the ideal cooling load of a room. The study seems to be a success and may set the path for a new ventilation system for tropical countries.
ACKNOWLEDGEMENTS

I would first and foremost like to show my deepest gratitude to Prof. Yau for accepting my request on conducting this study. For all the guidance that he has shown me throughout the entire process and the knowledge that he has impart on me.

I would like also like to thank Liew Hui Jin and Lai Chien Sin, the two course mates who are always willing to answer inquisitions and clear my thoughts of doubts. Without them, this study would have been less fruitful than it is.

I would like to thank Go Kah Hou who has indirectly aided me regarding the usage of TRNSYS and the detailed manual that he has written.

I would like to thank INTI International University’s lecture and staff for providing the necessary help needed during the experimental procedure of this study.

I would lastly like to thank my family for their unwavering support that they have shown me throughout this study.
DEDICATION

This thesis is dedicated to my parents.

My rock
My foundation
CONTENTS

DECLARATION ................................................................................................................................. i
ABSTRACT ..................................................................................................................................... ii
ACKNOWLEDGEMENTS ............................................................................................................... iii
DEDICATION ............................................................................................................................... iv
LIST OF FIGURES ...................................................................................................................... viii
LIST OF TABLES ......................................................................................................................... x
LIST OF ABBREVIATIONS ........................................................................................................ xi
NOMENCLATURE ........................................................................................................................ xii
CHAPTER 1 ................................................................................................................................. 13
  1.1. Background ............................................................................................................................ 13
  1.2. Problem Statement ............................................................................................................... 15
  1.3. Objectives ............................................................................................................................ 16
  1.4. Importance of Study ........................................................................................................... 16
  1.5. Scope of Study ..................................................................................................................... 16
    1.5.1. Literature Review ........................................................................................................... 16
    1.5.2. TRNSYS simulation ....................................................................................................... 17
    1.5.3. MATLAB Plotting ......................................................................................................... 17
CHAPTER 2 .................................................................................................................................. 18
  2.1. Comparison of existing ventilations (Mixing and Displacement) ..................................... 18
  2.2. Comparison of Stratum Ventilation with Existing Ventilation ........................................... 20
  2.3. Simulation Study (Comparison of UFAD and CBAD) ......................................................... 22
    2.3.1. Parameters and setup .................................................................................................... 22
    2.3.2. Results and analysis ..................................................................................................... 26
  2.4. Comparison of Mixing, Displacement and Stratum Ventilation ....................................... 28
    2.4.1. Parameters and setup .................................................................................................... 28
  2.5. Results and analysis ............................................................................................................ 33
  2.6. Comparison of Existing UFAD System with CBAD System ........................................... 35
2.6.1. Parameters and Setup ................................................................. 35
2.7. Results and Analysis ................................................................. 37
2.8. Chapter Summary ...................................................................... 39

CHAPTER 3 ......................................................................................... 40
3.1. Literature study ......................................................................... 40
3.2. Data collection ........................................................................... 40
  3.2.1. Parameter Analysis ............................................................. 40
  3.2.2. Instrumentation .................................................................. 41
3.3. Zone Division and Data Measurement ....................................... 42
  3.3.1. Lecture theatre ................................................................. 42
3.4. Simulations of Software ............................................................ 43
  3.4.1. TRNBuild ........................................................................ 43
  3.4.2. TRNSYS (Transient System Simulation Program) ............ 44
  3.4.3. Room Categories .............................................................. 44
  3.4.4. ACH (Air Change per Hour) .............................................. 44
  3.4.5. Supply Air Temperature and Relative Humidity ............... 44
  3.4.6. MATLAB ....................................................................... 45
3.5. Comparison of Energy Consumption ......................................... 45
3.6. Chapter Summary ...................................................................... 45

CHAPTER 4 ......................................................................................... 46
4.1. Energy Consumption for a Tropical Country .............................. 46
4.2. 4.3 TRNBuild Model ............................................................... 48
  4.2.1. System Data ..................................................................... 49
4.3. 4.5 Chapter Summary ............................................................... 51

CHAPTER 5 ......................................................................................... 52
5.1. Parameter Analysis (Lecture Theatre) ........................................ 52
  5.1.1. Air Temperature .............................................................. 53
  5.1.2. Relative Humidity ........................................................... 53

vi
5.1.3. Flow Rate and Air Velocity ............................................ 55
5.1.4. Data Analysis .............................................................. 56
5.2. TRNSYS Simulation .......................................................... 57
  5.2.1. Air Temperature Analysis ............................................ 58
  5.2.2. Relative Humidity Analysis .......................................... 61
  5.2.3. Overall Cooling Load Analysis ...................................... 63
5.3. Performance of Stratum Ventilation ....................................... 66
  5.3.1. Heat Gain from the Wall .............................................. 66
  5.3.2. Air Ventilation .......................................................... 67
  5.3.3. Artificial lighting and Classroom Equipment ...................... 68
  5.3.4. Occupancy ............................................................. 68
  5.3.5. Total Cooling Load ..................................................... 69
5.4. Objective Review .................................................................. 70
  5.4.1. The Evaluation of Small and Medium Sized Room Suitability for Stratum Ventilation ................................................................. 70
  5.4.2. The Investigation of Stratum Ventilation Performance in a Tropical Country ................................................................. 70
  5.4.3. The Evaluation of Performance of Different Types of Ventilation ................................................................. 70
5.5. Chapter Summary ............................................................... 71
CHAPTER 6 .............................................................................. 72
  6.1. Conclusion ................................................................. 72
  6.2. Recommendations ......................................................... 73
  6.3. Future work ................................................................. 73
REFERENCES ........................................................................ 74
Appendix Title ................................................................ 77
LIST OF FIGURES

Figure 2.1 Basic Schematic of Bottom-supply and Top-return Type of Under-floor Air Distribution (UFAD) System.................................18
Figure 2.2 Schematic Diagrams of: (a) Mixing Ventilation, (b) Displacement Ventilation and 20(c) Stratum Ventilation Systems Equipped with an Air-handling Unit and a Variable-speed Water-cooled Vapor Compression Chiller.........................20
Figure 2.3 Cubicles in Office Room................................................................22
Figure 2.4 Sketch of Cubicle Model for Under-floor and Overhead Air Distribution Systems..............................................................................22
Figure 2.5 Distributions of Velocity, Temperature, Relative Humidity, and Contaminant Concentration for Typical Case of Underfloor System (Simulation 1).......25
Figure 2.6 Distributions of Velocity, Temperature, Relative Humidity, and Contaminant Concentration for Typical Case of Overhead System (Simulation 4). ...25
Figure 2.7 Thermal Comfort Factor VS Inlet Angle for Mixing (Left) and Displacement (Right) Ventilation...................................................................28
Figure 2.8 Configuration of Typical Office...........................................................29
Figure 2.9 Configuration of Typical Classroom....................................................29
Figure 2.10 Configuration of Typical Retail Shop..................................................30
Figure 2.11 Year-round Mean COP for Different Cases........................................32
Figure 2.12 Monthly-averaged Zone Conditions For Office Concourse Without Part-load................................................................................33
Figure 2.13 Office Floor Plan Showing Temperature Sensors Locations...............34
Figure 3.1 Personal Ventilation...........................................................................40
Figure 3.2 Thermo Anemometer Model 440-A by ALNOR..................................41
Figure 3.3 Lecture Theatre (Centre Section).........................................................41
Figure 3.4: Lecture Theatre (Side section)............................................................42
Figure 4.1 Weather File Linkage.........................................................................45
Figure 4.2 TRNSYS Simulation Layout.................................................................46
Figure 4.3 TRNBuild Model for Small Size Room..................................................47
Figure 5.1 Air Temperatures at Lecture Theatre...................................................52
Figure 5.2 Relative Humidity of Lecture Theatre..................................................53
Figure 5.3 Comparison of Gradient between Relative Humidity and Temperature...53
Figure 5.4 Trend Line Comparisons between Temperature and Relative Humidity.................................................................54
Figure 5.5 Trend Line Comparison of the Velocity with Flow Rate........55
Figure 5.6: Small Room Stratum Ventilation Temperature Graph ..........................56
Figure 5.7: Small Room Stratum Ventilation Relative Humidity Graph ..........................56
Figure 5.8: Small Room Stratum Ventilation Overall Cooling Load Graph..........................59
Figure 5.9 Stratum Ventilation Air Temperature Graph.........................................................57
Figure 5.10 Displacement Ventilation Air Temperature Graph..............................58
Figure 5.11 Mixing Displacement Air Temperature..............................................................58
Figure 5.12 Stratum Ventilation Relative Humidity Graph.................................................60
Figure 5.13 Displacement Ventilation Relative Humidity Graph.................................60
Figure 5.14 Mixing Ventilation Relative Humidity Graph..................................................61
Figure 5.15 Stratum Ventilation Overall Cooling Load Graph.................................62
Figure 5.16 Displacement Ventilation Overall Cooling Load Graph...............................63
Figure 5.17 Mixing Ventilation Overall Cooling Load Graph...........................................63
# LIST OF TABLES

Table 2.1 Data Used in Cubicle Modelling ............................................................... 24
Table 2.2 Inlet Boundary Conditions, Inlet Setup and Simulation Cases .................. 25
Table 2.3 Comparison of Energy Consumption of the Two Air Distribution Systems and Energy Saving by Using a UFAD System ....................................................... 28
Table 2.4 Summary Requirements for the Stratum Ventilation Simulations .............. 31
Table 2.5 Parameter Values for the Chiller System Used in the Office ....................... 32
Table 2.6 Total Primary Consumption Without Part Load ......................................... 33
Table 2.7 Energy Consumption of Simulated UFAD System for Different Operating Parameters .......................................................................................................................... 37
Table 2.8 Comparison between Energy Consumption of Ideal (Simulated) and Actual UFAD Systems .............................................................................................................. 40
Table 2.9 Comparison between Energy Consumption of Simulated UFAD and CBAD Systems . 40
Table 4.1 System Data for Small Size Room ............................................................. 49
Table 4.2 System Data for Medium size Room ........................................................... 50
Table 4.3 Difference Wall Details ............................................................................. 51
Table 5.1: Lecture Theatre Data ............................................................................... 52
Table 5.2 Air Temperature Data from Simulation ...................................................... 60
Table 5.3 Relative Humidity Data from Simulation .................................................... 62
Table 5.4 Overall Cooling Load Data from Simulation .............................................. 65
Table 5.5 Unit Resistance for Difference Wall Layers .............................................. 66
Table 5.6 Wall Layers and Respective Unit Resistance ............................................. 67
Table 5.6 Initial Conditions for Air Ventilation Cooling Load .................................. 67
Table 5.7 Cooling Load for External and Internal Gain .......................................... 69
Table 5.8 Tabulation of Cooling Load used in One Year .......................................... 70
Table 5.9 Comparison of Energy Savings .................................................................. 71
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACMV</td>
<td>Air Conditioning and Mechanical Ventilation</td>
</tr>
<tr>
<td>CAD</td>
<td>Conventional Air Distribution</td>
</tr>
<tr>
<td>CBAD</td>
<td>Ceiling Based Air Distribution</td>
</tr>
<tr>
<td>COP</td>
<td>Coefficient Of Performance</td>
</tr>
<tr>
<td>HVAC</td>
<td>Heating; Ventilation and Air Conditioning</td>
</tr>
<tr>
<td>IAQ</td>
<td>Indoor Air Quality</td>
</tr>
<tr>
<td>PMV</td>
<td>Predicted Mean Vote</td>
</tr>
<tr>
<td>PLC</td>
<td>Part Load Controller</td>
</tr>
<tr>
<td>UFAD</td>
<td>Under floor Air Distribution</td>
</tr>
</tbody>
</table>
## NOMENCLATURE

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D$</td>
<td>mass diffusivity of species in air, m$^2$/s</td>
</tr>
<tr>
<td>$g$</td>
<td>gravitational acceleration vector, m/s$^2$</td>
</tr>
<tr>
<td>$H_{room}$</td>
<td>zone height (m)</td>
</tr>
<tr>
<td>$k$</td>
<td>thermal conductivity of air, W/(m K)</td>
</tr>
<tr>
<td>$m$</td>
<td>concentration of species, kg of species/kg of air</td>
</tr>
<tr>
<td>$Q_{sen}$</td>
<td>sensible load of building zone (kW)</td>
</tr>
<tr>
<td>$T$</td>
<td>temperature; average temperature (with subscript), °C</td>
</tr>
<tr>
<td>$T_{grad}$</td>
<td>temperature gradient along the zone height (°C−1)</td>
</tr>
<tr>
<td>$u$</td>
<td>velocity vector, m/s</td>
</tr>
<tr>
<td>$\rho$</td>
<td>density of air, kg/m$^3$</td>
</tr>
<tr>
<td>$\beta$</td>
<td>thermal expansion coefficient, K$^{-1}$</td>
</tr>
<tr>
<td>$C_p$</td>
<td>specific heat of air, J/(kg K)</td>
</tr>
<tr>
<td>$\mu$</td>
<td>viscosity of air, kg/(m s)</td>
</tr>
<tr>
<td>$\theta_{r}$</td>
<td>dimensionless temperature coefficient</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1. Background

Malaysia is a country with a tropical climate due to its location in the equatorial region of the world. Temperature in Malaysia rises to a peak of 32 degree Celsius in the year of 2014. Air conditioning and mechanical ventilation (ACMV) system is the main method to overcome this extreme heat. The general idea of ACMV system is to displace or change the air that is contained in an area to provide better indoor air quality as well temperature control to provide a an environment that is comfortable for its occupants. However these air conditioning systems require an enormous amount of energy to function. As Malaysia develops, air conditioning systems are easily available in every household and widely used in commercial buildings. Malaysia uses an estimate of 45% of electricity usage on cooling systems. The estimated power usage of 2014 is 22,100 MW of energy and 9,945 MW is dedicated to cooling systems alone. Ventilation systems in Malaysia commonly divided into mixing systems such as the conventional air distribution (CAD) systems or the displacement systems such as the under floor air distribution system (UFAD). However a new ventilation system has been proposed to be used in Malaysia, it is known as the stratum ventilation.

Mixing ventilations systems are widely used in Malaysia because it easily available and the initial cost of the operating system are affordable. The most common type of mixing ventilation is the overhead or ceiling based air distribution system (CBAD). These systems are the most basic of the ventilation systems which uses basic refrigeration system to cool the indoor temperature. The system contains an evaporator, condenser, expansion valve and a compressor. CBAD capitalizes on the phase conversion by evaporating and condensing the refrigerant inside it to absorb and expel heat. These refrigerants use are able to change physical composition at low temperatures