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ABSTRACT

The application of fluidized bed has emerged since the past decade as one of the most
potential and promising solution to a relatively wide spectrum of engineering field,
particularly on the biochemical processing industry. Fast pyrolysis has gained its huge
popularity in the biofuel and bio-oil industry due to its high production rate using the
technology of fluidized bed. Even though an enormous number of academic studies
have been performed experimentally to improve and understand more on the
fluidization process; however, the complex hydrodynamics and interaction of the
fluidized particles are still not largely understood. Therefore, computational fluid
dynamics (CFD) has turned out to be a useful tool to predict and solve for the
particles interaction and flow behaviour in the fluidized bed. Among the CFD
techniques and module available on the market, Euler-Eulerian Two-Fluid Model
(EE-TFM) have been chosen as to study and obtain the operational parameters
required for the fluidization of different materials and different particle diameters. In
." the present work, the effect of the material, namely stainless steel and sand and the
”Arespective diameters of 0.5 and | millimetre have been investigated with the aid of
Ansys FLUENT 15. From the simulation, it has found that the minimum fluidization
velocities of steel beads are 0.7 m/s and 1.4 m/s respectively for diameter of 0.5
millimetres and 1.0 millimetre. On the other hand, the minimum required velocities to
fluidize the less dense sand beads are 0.3 ns and 0.7 m/s for particle diameter of 0.5
millimetres and 1.0 millimetre respectively. It has also discovered that the minimum
fluidization velocity will increase as the density of the particle material increases;
while it will also increase when the particle diameter increases. Therefore, it can be
concluded that the drag force required to fluidize the specific solid bed material is

proportional to both the density and the diameter of the particle chosen.
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CHAPTER 1

INTRODUCTION

1.1.  Background

In 2010, the global production of biofuel has exceeded over 100 billion liters,
comparing to the previous year, it has rose by approximately 17%. The trend has
shown that many nations are driven to invest more on the renewable cnergy, namely
biofuel. Glancing through the public concern regarding the human strong dependency
on fossil fuels and its nsecure supply, biofuel has turned out to be an alternative to
reduce the consumption of fossil fuels for transportation need. However, it is crucial
to ensure that the demand for biomass does not compete with the regional food
supplies, such as corn and sugarcane. Therefore, the biofuels has to be derived from
the lignocellulose portion of biomass — or in other words, the byproduct or waste of
agricultural activities to prevent the conflict of food source. According to the research
conducted by Stephan et al. (2011), second-generation biofuels extracted from
cellulosic source could be commercially competitive to replace the first-generation
ethanol that are generally made from corn by 2020 if second-generation biofuel
industry is supported. Currently, there are several techniques available in the industry
for the conversion of unwanted biomass to combustible, energy-packed fuel;
nevertheless, pyrolysis appears to be a relatively promising technique in terms of its

simplicity, production yield and economical value.

In recent years, fluidized beds have been extensively used as reactors for pyrolysis as
they overcome some of the disadvantages of the conventional pyrolysis reactors such
as fixed bed (Trambouze and Euzen, 2005). Fluidized beds have a comparably higher
rate of reaction per unit volume due to the highly turbulent flow of the dense solid |
bed. The turbulence has promoted a better mixing environment for the biomass to
have a higher heat transfer rate with the inert particles. Mellin et al. (2013) have
reported that their designed reactor was able to reach an astounding rate of 1000 °C/s.

The turbulent environment has also give rise to the even temperature distribution of

the bed, which prevents the formation of local hot spots.
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Fluidization is a phenomenon where granular solids behave like fluid state through
contact with either gas or liquid or even both. It can be achieved by imposing fluid
drag on the solid particles. As the drag force increases, the gravitational pull on the
particles will be slowly offset by the drag, which causes the solids to remain in a
semi-suspension condition. When the drag force exerted by the fluid velocity passing
through the solids is exactly equal to the gravitational pull, the solids bed is said to be
fluidized. This stage is named as incjpient fluidization and the fluid velocity is known
as the minimum or critical fluidization velocity. At this stage, the particles will exhibit
the fluid behavior and suspend within the fluid flow. Once the particle velocity
surpassed the critical velocity threshold, the fluidized solids bed will start to expand

and swirl turbulently like boiling water where bubbles are forming constantly.
1.2. Problem Statement

Bubbling fluidized beds have gained its rising popularity in the biochemical industry

nowadays due to its even mixing capability and thermal distribution. Large quantities

_of experimental studies and numerical research have been conducted for different

process parameters on pyrolysis; however, the hydrodynamics of the fluidized bed
reactors are still not well understood yet due to the complexity of the particle
interactions. Therefore; simulations using computational fluid dynamics (CFD) stands
out as a useful tool to study the fluidization process and ultimately obtain the required

parameters for specific operation.
1.3. Objectives of the Research

The primary aim of this thesis is to develop a CFD simulation model on the complex
fluidization process of particles in a fast pyrolysis fluidized bed reactor. The overall

objectives of the research arc pointed out as follows:
- To model a laboratory-scale bubbling fluidized bed for pyrolysis of biomass
® To obtain the parameters required for the fluidization of particles

* To compare the effect of different particle materials and sizes on the

fluidization process
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1.4. Scope of the Research

Fluidization is the stage where the drag force acting on the granular, dense particles
completely offset the gravitational pull. The biomass will always have a lower density
than the inert particles; if the drag exerted is sufficient to fluidize the inert particles,
the biomass will definitely be flowing upwards through the afloat particles. Hence, the
research will be focused on the hy\drodynamics of the inert particles only without
taking account of the biomass dynamics. Since the biomass will only be introduced
into the fluidized bed after the particles have been fluidized, the particle-biomass

interaction and chemical reaction will not be considered in the simulation.
1.5.  Report Organization

The next chapter of the paper covers a detailed literature review of several
experimental and computational approaches on fluidization and the survey on the
hydrodynamics model of dense bed particles. In the third chapter, the methodology

and research parameters of the study were described in details. The simulation result

~ and the corresponding discussion were presented in the fourth chapter. Lastly, the

conclusion on the present research paper and the potential future works

recommendation have been drawn in the fifth chapter.
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CHAPTER 2

LITERATURE REVIEW

2.1. Experimental Survey

Laverman et al. (2008) have performed an experiment to study the fluid dynamics of a
bubbling fluidized bed. The author used two different kind of technique and
equipment to observe the effect of bed height to reactor diameter ratio. The
implication of changing the superficial speed of the nitrogen gas was also observed. In
the experiment, the author combined the usage of Particle Image Velocimetry (PIV)
and Digital Image Analysis (DIA) in the experiment. Both of the equipment is
considered as a more advanced approach as it does not destruct the specimen while
measurement was taken place. Hence, it allowed the authors to study the bubble
formation and fusion. Besides that, it also allows correction or modification on the

model to climinate the effect of the interaction between the nitrogen bubble and the

' solid phasc on the velocity profile of the solid.

Similar to Laverman et al. (2008), Yuu, Umekage and Johno (2000) have conducted a
study on the kinetics and hydrodynamics of the solid and gas phase in a bubbling
fluidized bed. In their experiment, approximately 100,000 particles with nominal
diameter of 310 um, which are categorized as Geldart Scale B particles. The solid
phase was used to observe the parti-cle reaction and interaction with the gas bubble.
The corresponding simulation was also carried out to verify with the experimental
outcomes. A three-dimensional Lagrangian distinct element method (DEM) was
deployed to calculate the particle—particle interactions. Apart from the Eulerian
approaches, the DEM technique solve the Navier-Stokes equation and the flow
characteristic equation of the particles simultaneously. The numerical or simulation

results were found to be conforming to the experimental results.

Instead of using PIV or DEM, Warsito and Fan (2001) used a different approach to
monitor their results on fluidized bed. An electrical and sensor circuit was used to

measure the cross-sectional volume fraction contour of the solid phase. The contour

was then used to show the location of gas holdups in the system. The experiment was




